LUAD: A lightweight unsupervised anomaly detection scheme for multivariate time series data

异常检测 计算机科学 预言 数据挖掘 多元统计 自编码 异常(物理) 人工智能 时间序列 编码器 方案(数学) 机器学习 模式识别(心理学) 深度学习 数学分析 物理 操作系统 数学 凝聚态物理
作者
Jin Fan,Zhentao Liu,Huifeng Wu,Jia Wu,Zhipeng Si,Hao Peng,Tom H. Luan
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:557: 126644-126644 被引量:11
标识
DOI:10.1016/j.neucom.2023.126644
摘要

Anomaly detection of multivariate time series data has drawn extensive research attention recently, as it can be widely applied into various different domains, such as Prognostics Health Management, community behaviour monitoring, financial Anti-fraud and so on. Anomalies typically refer to unexpected observations or sequences within the captured data. The prevailing solutions of current anomaly detection methods are not only highly related to the individual use, but also rely on the domain-specific prior knowledge. Existing methods of anomaly detection by detecting aberrations encounter fundamental engineering challenges in terms of steam data online nature and the lack of expert knowledge for the training data set. Also, to meet the practical requirements, the anomaly detection model is often required to be used in edge architectures where the computing resources are limited, which leads to the demand for developing light-weight anomaly detection methods. To address these challenges, we propose a lightweight, unsupervised anomaly detection scheme, called LUAD. LUAD is consists of a detection model and a diagnosis model. The detection model learns the normal patterns of input data via an encoder–decoder scheme that combines Temporal Convolutional Network (TCN) and Variational Auto-Encoder (VAE) to deconstruct and reconstruct multivariate time series data. The diagnosis model improves LUAD's overall detection accuracy and provides a reasonable explanation for an anomaly. Experiments on three very different public datasets indicate that LUAD is both highly generalizable and more accurate than the two current state-of-the-arts. Overall, the LUAD model outperforms the baselines both in effectiveness (0.71%∼1.45% higher) and efficiency (31X smaller in model size, 1.9X faster in training time).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sysi完成签到 ,获得积分10
7秒前
绿波电龙完成签到,获得积分10
8秒前
11秒前
ZZzz完成签到 ,获得积分10
12秒前
wujiwuhui发布了新的文献求助10
16秒前
18秒前
梦梦的小可爱完成签到 ,获得积分10
18秒前
xinjie发布了新的文献求助10
21秒前
23秒前
蛋花肉圆汤完成签到,获得积分10
23秒前
羞涩的文轩完成签到 ,获得积分10
24秒前
29秒前
30秒前
北城完成签到 ,获得积分10
32秒前
量子星尘发布了新的文献求助10
32秒前
35秒前
爱听歌电灯胆完成签到 ,获得积分10
35秒前
不爱吃西葫芦完成签到 ,获得积分10
36秒前
申燕婷完成签到 ,获得积分10
37秒前
橙子完成签到 ,获得积分10
39秒前
ruochenzu发布了新的文献求助10
39秒前
fusheng完成签到 ,获得积分10
48秒前
浮生完成签到 ,获得积分10
53秒前
xinjie完成签到,获得积分10
55秒前
Will完成签到,获得积分10
1分钟前
cuddly完成签到 ,获得积分10
1分钟前
掉头发的小白完成签到,获得积分10
1分钟前
不想看文献完成签到 ,获得积分10
1分钟前
1分钟前
当女遇到乔完成签到 ,获得积分10
1分钟前
独行者完成签到,获得积分10
1分钟前
眼睛大的电脑完成签到,获得积分10
1分钟前
1分钟前
敏敏发布了新的文献求助10
1分钟前
木木完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
如意2023完成签到 ,获得积分10
1分钟前
fomo完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022