LUAD: A lightweight unsupervised anomaly detection scheme for multivariate time series data

异常检测 计算机科学 预言 数据挖掘 多元统计 自编码 异常(物理) 人工智能 时间序列 编码器 方案(数学) 机器学习 模式识别(心理学) 深度学习 数学分析 物理 操作系统 数学 凝聚态物理
作者
Jin Fan,Zhentao Liu,Huifeng Wu,Jia Wu,Zhipeng Si,Hao Peng,Tom H. Luan
出处
期刊:Neurocomputing [Elsevier]
卷期号:557: 126644-126644 被引量:11
标识
DOI:10.1016/j.neucom.2023.126644
摘要

Anomaly detection of multivariate time series data has drawn extensive research attention recently, as it can be widely applied into various different domains, such as Prognostics Health Management, community behaviour monitoring, financial Anti-fraud and so on. Anomalies typically refer to unexpected observations or sequences within the captured data. The prevailing solutions of current anomaly detection methods are not only highly related to the individual use, but also rely on the domain-specific prior knowledge. Existing methods of anomaly detection by detecting aberrations encounter fundamental engineering challenges in terms of steam data online nature and the lack of expert knowledge for the training data set. Also, to meet the practical requirements, the anomaly detection model is often required to be used in edge architectures where the computing resources are limited, which leads to the demand for developing light-weight anomaly detection methods. To address these challenges, we propose a lightweight, unsupervised anomaly detection scheme, called LUAD. LUAD is consists of a detection model and a diagnosis model. The detection model learns the normal patterns of input data via an encoder–decoder scheme that combines Temporal Convolutional Network (TCN) and Variational Auto-Encoder (VAE) to deconstruct and reconstruct multivariate time series data. The diagnosis model improves LUAD's overall detection accuracy and provides a reasonable explanation for an anomaly. Experiments on three very different public datasets indicate that LUAD is both highly generalizable and more accurate than the two current state-of-the-arts. Overall, the LUAD model outperforms the baselines both in effectiveness (0.71%∼1.45% higher) and efficiency (31X smaller in model size, 1.9X faster in training time).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车语雪发布了新的文献求助30
刚刚
李欣洳完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
宋小雅发布了新的文献求助10
1秒前
segovia_tju发布了新的文献求助10
3秒前
3秒前
深情安青应助xxx采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
向黎发布了新的文献求助10
3秒前
4秒前
neversay4ever发布了新的文献求助10
4秒前
tyq发布了新的文献求助10
5秒前
盒子发布了新的文献求助10
5秒前
可爱的函函应助棋士采纳,获得10
5秒前
5秒前
6秒前
哈哈完成签到,获得积分10
7秒前
屈屈发布了新的文献求助10
7秒前
7秒前
李睿发布了新的文献求助10
7秒前
明天天气真好完成签到,获得积分10
7秒前
8秒前
Bellona发布了新的文献求助10
9秒前
9秒前
ftnq完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
小小K发布了新的文献求助10
11秒前
Owen应助wjw采纳,获得10
11秒前
轻松囧发布了新的文献求助10
11秒前
556发布了新的文献求助10
11秒前
12秒前
白白白完成签到,获得积分10
12秒前
segovia_tju完成签到,获得积分10
12秒前
无私小凡完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711286
求助须知:如何正确求助?哪些是违规求助? 5202990
关于积分的说明 15263800
捐赠科研通 4863647
什么是DOI,文献DOI怎么找? 2610818
邀请新用户注册赠送积分活动 1561136
关于科研通互助平台的介绍 1518616