已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LUAD: A lightweight unsupervised anomaly detection scheme for multivariate time series data

异常检测 计算机科学 预言 数据挖掘 多元统计 自编码 异常(物理) 人工智能 时间序列 编码器 方案(数学) 机器学习 模式识别(心理学) 深度学习 操作系统 物理 数学 数学分析 凝聚态物理
作者
Jin Fan,Zhentao Liu,Huifeng Wu,Jia Wu,Zhipeng Si,Hao Peng,Tom H. Luan
出处
期刊:Neurocomputing [Elsevier]
卷期号:557: 126644-126644 被引量:11
标识
DOI:10.1016/j.neucom.2023.126644
摘要

Anomaly detection of multivariate time series data has drawn extensive research attention recently, as it can be widely applied into various different domains, such as Prognostics Health Management, community behaviour monitoring, financial Anti-fraud and so on. Anomalies typically refer to unexpected observations or sequences within the captured data. The prevailing solutions of current anomaly detection methods are not only highly related to the individual use, but also rely on the domain-specific prior knowledge. Existing methods of anomaly detection by detecting aberrations encounter fundamental engineering challenges in terms of steam data online nature and the lack of expert knowledge for the training data set. Also, to meet the practical requirements, the anomaly detection model is often required to be used in edge architectures where the computing resources are limited, which leads to the demand for developing light-weight anomaly detection methods. To address these challenges, we propose a lightweight, unsupervised anomaly detection scheme, called LUAD. LUAD is consists of a detection model and a diagnosis model. The detection model learns the normal patterns of input data via an encoder–decoder scheme that combines Temporal Convolutional Network (TCN) and Variational Auto-Encoder (VAE) to deconstruct and reconstruct multivariate time series data. The diagnosis model improves LUAD's overall detection accuracy and provides a reasonable explanation for an anomaly. Experiments on three very different public datasets indicate that LUAD is both highly generalizable and more accurate than the two current state-of-the-arts. Overall, the LUAD model outperforms the baselines both in effectiveness (0.71%∼1.45% higher) and efficiency (31X smaller in model size, 1.9X faster in training time).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
specium完成签到,获得积分10
2秒前
风趣的飞荷完成签到,获得积分10
3秒前
科研通AI6应助77采纳,获得10
3秒前
xiuxiuzhang完成签到 ,获得积分10
4秒前
orixero应助blue2021采纳,获得10
7秒前
梁真真完成签到 ,获得积分10
8秒前
9秒前
10秒前
TongKY完成签到 ,获得积分10
10秒前
韩55应助77采纳,获得10
11秒前
12秒前
风雨完成签到,获得积分10
14秒前
晨晨完成签到,获得积分20
14秒前
hh发布了新的文献求助10
14秒前
123完成签到 ,获得积分10
14秒前
15秒前
晨晨发布了新的文献求助10
18秒前
20秒前
亦木发布了新的文献求助10
21秒前
以鹿之路发布了新的文献求助10
25秒前
绿豆芽发布了新的文献求助10
26秒前
28秒前
aaa5a123完成签到 ,获得积分10
29秒前
浔初先生完成签到,获得积分10
31秒前
31秒前
32秒前
36秒前
37秒前
亦木完成签到 ,获得积分10
37秒前
39秒前
Criminology34应助123采纳,获得20
41秒前
缓慢采柳完成签到 ,获得积分10
41秒前
123发布了新的文献求助10
42秒前
46秒前
57秒前
626完成签到,获得积分10
58秒前
科研通AI6应助zhzhzh采纳,获得10
1分钟前
洁净的士晋完成签到,获得积分10
1分钟前
康康完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611827
求助须知:如何正确求助?哪些是违规求助? 4695978
关于积分的说明 14889959
捐赠科研通 4727057
什么是DOI,文献DOI怎么找? 2545906
邀请新用户注册赠送积分活动 1510337
关于科研通互助平台的介绍 1473236