LUAD: A lightweight unsupervised anomaly detection scheme for multivariate time series data

异常检测 计算机科学 预言 数据挖掘 多元统计 自编码 异常(物理) 人工智能 时间序列 编码器 方案(数学) 机器学习 模式识别(心理学) 深度学习 数学分析 物理 操作系统 数学 凝聚态物理
作者
Jin Fan,Zhentao Liu,Huifeng Wu,Jia Wu,Zhipeng Si,Hao Peng,Tom H. Luan
出处
期刊:Neurocomputing [Elsevier]
卷期号:557: 126644-126644 被引量:11
标识
DOI:10.1016/j.neucom.2023.126644
摘要

Anomaly detection of multivariate time series data has drawn extensive research attention recently, as it can be widely applied into various different domains, such as Prognostics Health Management, community behaviour monitoring, financial Anti-fraud and so on. Anomalies typically refer to unexpected observations or sequences within the captured data. The prevailing solutions of current anomaly detection methods are not only highly related to the individual use, but also rely on the domain-specific prior knowledge. Existing methods of anomaly detection by detecting aberrations encounter fundamental engineering challenges in terms of steam data online nature and the lack of expert knowledge for the training data set. Also, to meet the practical requirements, the anomaly detection model is often required to be used in edge architectures where the computing resources are limited, which leads to the demand for developing light-weight anomaly detection methods. To address these challenges, we propose a lightweight, unsupervised anomaly detection scheme, called LUAD. LUAD is consists of a detection model and a diagnosis model. The detection model learns the normal patterns of input data via an encoder–decoder scheme that combines Temporal Convolutional Network (TCN) and Variational Auto-Encoder (VAE) to deconstruct and reconstruct multivariate time series data. The diagnosis model improves LUAD's overall detection accuracy and provides a reasonable explanation for an anomaly. Experiments on three very different public datasets indicate that LUAD is both highly generalizable and more accurate than the two current state-of-the-arts. Overall, the LUAD model outperforms the baselines both in effectiveness (0.71%∼1.45% higher) and efficiency (31X smaller in model size, 1.9X faster in training time).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lee1992完成签到,获得积分10
1秒前
瘦瘦的秋柔完成签到 ,获得积分10
1秒前
seven发布了新的文献求助10
1秒前
2秒前
小柠檬发布了新的文献求助10
2秒前
打打应助草上飞采纳,获得10
2秒前
依克完成签到,获得积分10
3秒前
罗备发布了新的文献求助10
4秒前
传奇3应助香蕉不二采纳,获得10
5秒前
5秒前
5秒前
星辰大海应助小柠檬采纳,获得10
7秒前
7秒前
lch23560应助subass采纳,获得20
8秒前
jj发布了新的文献求助10
8秒前
bkagyin应助sulh采纳,获得10
8秒前
活泼的聋五完成签到,获得积分10
8秒前
脑洞疼应助黄俊采纳,获得10
8秒前
Adler应助郑石采纳,获得10
9秒前
9秒前
慕青应助奶冻采纳,获得10
10秒前
11秒前
11秒前
传奇3应助酥酥脆采纳,获得10
11秒前
可爱的函函应助研友_V8Qmr8采纳,获得10
11秒前
11秒前
Lucy__Kuo发布了新的文献求助10
11秒前
14秒前
万能图书馆应助一粟采纳,获得10
15秒前
lllkkk发布了新的文献求助10
16秒前
17秒前
17秒前
zhangxinting0818完成签到,获得积分10
18秒前
LSQ完成签到 ,获得积分10
18秒前
lala发布了新的文献求助10
18秒前
18秒前
21秒前
21秒前
22秒前
李健应助zhangxinting0818采纳,获得10
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125620
求助须知:如何正确求助?哪些是违规求助? 2775921
关于积分的说明 7728309
捐赠科研通 2431379
什么是DOI,文献DOI怎么找? 1291979
科研通“疑难数据库(出版商)”最低求助积分说明 622295
版权声明 600376