LUAD: A lightweight unsupervised anomaly detection scheme for multivariate time series data

异常检测 计算机科学 预言 数据挖掘 多元统计 自编码 异常(物理) 人工智能 时间序列 编码器 方案(数学) 机器学习 模式识别(心理学) 深度学习 数学分析 物理 操作系统 数学 凝聚态物理
作者
Jin Fan,Zhentao Liu,Huifeng Wu,Jia Wu,Zhipeng Si,Hao Peng,Tom H. Luan
出处
期刊:Neurocomputing [Elsevier]
卷期号:557: 126644-126644 被引量:11
标识
DOI:10.1016/j.neucom.2023.126644
摘要

Anomaly detection of multivariate time series data has drawn extensive research attention recently, as it can be widely applied into various different domains, such as Prognostics Health Management, community behaviour monitoring, financial Anti-fraud and so on. Anomalies typically refer to unexpected observations or sequences within the captured data. The prevailing solutions of current anomaly detection methods are not only highly related to the individual use, but also rely on the domain-specific prior knowledge. Existing methods of anomaly detection by detecting aberrations encounter fundamental engineering challenges in terms of steam data online nature and the lack of expert knowledge for the training data set. Also, to meet the practical requirements, the anomaly detection model is often required to be used in edge architectures where the computing resources are limited, which leads to the demand for developing light-weight anomaly detection methods. To address these challenges, we propose a lightweight, unsupervised anomaly detection scheme, called LUAD. LUAD is consists of a detection model and a diagnosis model. The detection model learns the normal patterns of input data via an encoder–decoder scheme that combines Temporal Convolutional Network (TCN) and Variational Auto-Encoder (VAE) to deconstruct and reconstruct multivariate time series data. The diagnosis model improves LUAD's overall detection accuracy and provides a reasonable explanation for an anomaly. Experiments on three very different public datasets indicate that LUAD is both highly generalizable and more accurate than the two current state-of-the-arts. Overall, the LUAD model outperforms the baselines both in effectiveness (0.71%∼1.45% higher) and efficiency (31X smaller in model size, 1.9X faster in training time).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
bibixi发布了新的文献求助10
1秒前
林晚停完成签到,获得积分10
2秒前
2秒前
YingyingFan完成签到,获得积分10
2秒前
jinmei2025完成签到,获得积分10
2秒前
3秒前
隐形的寒香完成签到,获得积分10
3秒前
思源应助Silver采纳,获得10
3秒前
3秒前
小李发布了新的文献求助10
4秒前
hml完成签到,获得积分20
4秒前
Ava应助风清扬采纳,获得10
4秒前
北向发布了新的文献求助30
5秒前
1433223完成签到,获得积分10
5秒前
张公子完成签到,获得积分10
5秒前
Urologyzz发布了新的文献求助10
6秒前
yilin完成签到 ,获得积分10
6秒前
猕猴桃完成签到 ,获得积分10
6秒前
sasa发布了新的文献求助10
6秒前
III完成签到,获得积分10
6秒前
fly发布了新的文献求助10
7秒前
小太阳发布了新的文献求助10
7秒前
7秒前
7秒前
诚心的访蕊完成签到 ,获得积分10
8秒前
宋可乐完成签到,获得积分10
8秒前
陆离完成签到,获得积分10
8秒前
李健的小迷弟应助李白采纳,获得10
9秒前
在水一方应助李白采纳,获得10
9秒前
SciGPT应助李白采纳,获得10
9秒前
等等等等完成签到,获得积分10
9秒前
研友_VZG7GZ应助李白采纳,获得10
9秒前
传奇3应助李白采纳,获得10
9秒前
深情安青应助李白采纳,获得10
9秒前
所所应助李白采纳,获得10
9秒前
sk完成签到,获得积分10
9秒前
南北哈基咪完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658890
求助须知:如何正确求助?哪些是违规求助? 4824772
关于积分的说明 15083763
捐赠科研通 4817484
什么是DOI,文献DOI怎么找? 2578170
邀请新用户注册赠送积分活动 1532856
关于科研通互助平台的介绍 1491657