已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Dynamic Thresholds based Anomaly Detection Algorithm in Energy Consumption Process of Industrial Equipment

异常检测 能源消耗 可解释性 计算机科学 节能 高效能源利用 背景(考古学) 数据挖掘 算法 人工智能 工程类 生物 电气工程 古生物学
作者
Miao Zheng,Linyuan Geng,Bin Zuo,Teruo Nakata
标识
DOI:10.1145/3617695.3617706
摘要

In the context of dual-carbon strategy and dual-energy consumption control targets, energy conservation of industrial equipment is becoming more and more important. However, because of field barrier and experience dependency, energy conservation efficiency is low even with the spreading of IIoT, which leads to low utilization rate of IoT data in turn. Meanwhile, as an important part in energy conservation process, anomaly detection of energy consumption provides the fundamental for realization of energy saving. Data-driven anomaly detection algorithm are mature in academic area while rarely accepted in industrial area, because of interpretability issue of algorithm and complexity properties of industry activities. As a contribution to energy conservation activity in industry, from the view of data-driven anomaly detection of energy consumption of industrial equipment, this paper points out the capabilities that algorithm needs to own (unsupervised, real-time, adaptive, robust, universality), defines volatility, surge as main anomalies for detection, and propose a dynamic threshold based detection algorithm and estimate its feasibility on a real dataset. Experiment result shows average P, R, F1 score 72.1%, 80.1% and 73.1% separately, with remarking 12.1%, 40.1% and 33.1% improvements comparing with baseline model, and 2.37%, 18.9% and 11.2% improvements to DSPOT. Our work in this paper provides a positive effect for improving the efficiency of energy-saving analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秦琨发布了新的文献求助10
1秒前
1秒前
1秒前
天元神尊完成签到 ,获得积分10
2秒前
嗯哼应助lvsehx采纳,获得10
2秒前
mov完成签到,获得积分10
3秒前
6秒前
VDC发布了新的文献求助10
6秒前
白衣暴徒关注了科研通微信公众号
7秒前
十七发布了新的文献求助10
7秒前
Ping发布了新的文献求助30
9秒前
momo完成签到,获得积分10
9秒前
可爱的函函应助Todou采纳,获得10
10秒前
CYL07完成签到 ,获得积分10
12秒前
泡芙完成签到,获得积分10
12秒前
19秒前
悦耳代亦完成签到 ,获得积分0
19秒前
思源应助直率的小海豚采纳,获得10
19秒前
嗯哼应助lvsehx采纳,获得10
20秒前
白衣暴徒发布了新的文献求助10
24秒前
顾矜应助aaq009采纳,获得10
27秒前
乔治哇完成签到 ,获得积分10
36秒前
ddm发布了新的文献求助30
36秒前
小二郎应助怡然萃采纳,获得10
36秒前
37秒前
小蒋完成签到 ,获得积分10
40秒前
VDC驳回了小蘑菇应助
43秒前
852应助ATVNZ采纳,获得10
43秒前
零慧发布了新的文献求助10
43秒前
aaq009发布了新的文献求助10
45秒前
小蘑菇应助ddm采纳,获得10
48秒前
49秒前
孟晴天发布了新的文献求助30
50秒前
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
所所应助科研通管家采纳,获得10
51秒前
51秒前
51秒前
51秒前
沉默的无施完成签到,获得积分10
55秒前
高分求助中
Comprehensive natural products III : chemistry and biology 3000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346664
求助须知:如何正确求助?哪些是违规求助? 2973290
关于积分的说明 8658831
捐赠科研通 2653738
什么是DOI,文献DOI怎么找? 1453317
科研通“疑难数据库(出版商)”最低求助积分说明 672815
邀请新用户注册赠送积分活动 662753