SOC content of global Mollisols at a 30 m spatial resolution from 1984 to 2021 generated by the novel ML-CNN prediction model

软土 土壤碳 环境科学 计算机科学 遥感 卷积神经网络 均方误差 土壤科学 土壤水分 人工智能 统计 数学 地质学
作者
Xiangtian Meng,Yilin Bao,Chong Luo,Xinle Zhang,Huanjun Liu
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:300: 113911-113911 被引量:11
标识
DOI:10.1016/j.rse.2023.113911
摘要

Carbon cycle is influenced by agricultural soils, and accurately mapping the soil organic carbon (SOC) content of global Mollisols at a 30 m spatial resolution can contribute to clarifying the carbon sequestration capacity of each region, facilitate the quantification of agroecosystems and contribute to global food security. However, the high heterogeneity of environmental variables in global regions, coupled with the challenges posed by small-sample tasks, creates significant obstacles to producing reliable SOC content datasets. In this study, we collected 191,465 scenes of Landsat TM and OLI images and elevation model data to calculate spectral indices that can represent soil formation information based on a soil-pedogenic model. Second, a local strategy (LS) was proposed to reduce the influence of the high heterogeneity of SOC content and environmental variables on the prediction results. More importantly, the first meta-learning convolutional neural network (ML-CNN) model was proposed. It provides high prediction accuracy for small-sample tasks and was used to generate the first high-resolution global Mollisol region SOC content product (GMR-MCNN). Finally, we compared GMR-MCNN with the existing SoilGrids250m and Soil SubCenter products. The results showed that long-term, high-accuracy and high-resolution prediction of the SOC content in global Mollisol regions was achieved by the ML-CNN model (RMSE = 4.84 g kg−1, R2 = 0.75, RPIQ = 2.43). Compared with a CNN, ML-CNN can continuously optimize the meta-task, thus improving the performance of the model in small-sample tasks. Compared to the prediction model that combined the recursive feature elimination technique with the random forest model (RFE-RF), ML-CNN can efficiently extract high-level features from time-series data, thus improving the model performance. Compared with that of the global strategy, the RMSE of the LS decreased by 0.20 g kg−1, and R2 and RPIQ increased by 13.00% and 0.22, respectively. In addition, the GMR-MCNN results illustrated that the SOC content in the global Mollisol regions shows a decreasing trend, and the trend can be divided into significant decrease (1984–2000) and moderate decrease (2001−2021) phases. Different products were tested based on laboratory-measured SOC contents, and GMR-MCNN (RMSE = 6.13 g kg−1, R2 = 0.63) displayed better performance than SoilGrids250m (RMSE = 23.37 g kg−1, R2 = 0.28) and the Soil SubCenter map (RMSE = 8.59 g kg−1, R2 = 0.43). The developed methodology can provide a reference for the long-term observation of soil and crop properties at moderate and high resolutions globally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火花完成签到,获得积分20
1秒前
2220完成签到 ,获得积分10
1秒前
hotcas完成签到,获得积分10
2秒前
zjh完成签到,获得积分10
3秒前
系统提示完成签到,获得积分10
4秒前
Ade完成签到,获得积分10
4秒前
羲合完成签到,获得积分10
5秒前
5秒前
wgcheng发布了新的文献求助10
6秒前
6秒前
pengrui0911完成签到 ,获得积分10
7秒前
Sweger完成签到,获得积分20
7秒前
优秀笑柳完成签到,获得积分10
8秒前
MingqingFang发布了新的文献求助10
8秒前
9秒前
CipherSage应助小白采纳,获得10
10秒前
10秒前
10秒前
深情安青应助Sunly采纳,获得10
10秒前
hy发布了新的文献求助10
11秒前
有云发布了新的文献求助10
11秒前
胖心怡完成签到,获得积分10
11秒前
宁少爷应助Sweger采纳,获得30
12秒前
小明完成签到,获得积分10
13秒前
13秒前
Wan完成签到,获得积分10
14秒前
fengzi完成签到 ,获得积分10
14秒前
领导范儿应助hy采纳,获得10
16秒前
16秒前
maomao1986完成签到,获得积分10
17秒前
Acc完成签到,获得积分10
19秒前
姜月应助yang采纳,获得10
19秒前
19秒前
20秒前
之组长了完成签到 ,获得积分20
21秒前
hy完成签到,获得积分10
21秒前
21秒前
Sunly发布了新的文献求助10
22秒前
23秒前
王治清完成签到 ,获得积分10
23秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165129
求助须知:如何正确求助?哪些是违规求助? 2816163
关于积分的说明 7911618
捐赠科研通 2475835
什么是DOI,文献DOI怎么找? 1318401
科研通“疑难数据库(出版商)”最低求助积分说明 632124
版权声明 602388