亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SOC content of global Mollisols at a 30 m spatial resolution from 1984 to 2021 generated by the novel ML-CNN prediction model

软土 土壤碳 环境科学 计算机科学 遥感 卷积神经网络 均方误差 土壤科学 土壤水分 人工智能 统计 数学 地质学
作者
Xiangtian Meng,Yilin Bao,Chong Luo,Xinle Zhang,Huanjun Liu
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:300: 113911-113911 被引量:28
标识
DOI:10.1016/j.rse.2023.113911
摘要

Carbon cycle is influenced by agricultural soils, and accurately mapping the soil organic carbon (SOC) content of global Mollisols at a 30 m spatial resolution can contribute to clarifying the carbon sequestration capacity of each region, facilitate the quantification of agroecosystems and contribute to global food security. However, the high heterogeneity of environmental variables in global regions, coupled with the challenges posed by small-sample tasks, creates significant obstacles to producing reliable SOC content datasets. In this study, we collected 191,465 scenes of Landsat TM and OLI images and elevation model data to calculate spectral indices that can represent soil formation information based on a soil-pedogenic model. Second, a local strategy (LS) was proposed to reduce the influence of the high heterogeneity of SOC content and environmental variables on the prediction results. More importantly, the first meta-learning convolutional neural network (ML-CNN) model was proposed. It provides high prediction accuracy for small-sample tasks and was used to generate the first high-resolution global Mollisol region SOC content product (GMR-MCNN). Finally, we compared GMR-MCNN with the existing SoilGrids250m and Soil SubCenter products. The results showed that long-term, high-accuracy and high-resolution prediction of the SOC content in global Mollisol regions was achieved by the ML-CNN model (RMSE = 4.84 g kg−1, R2 = 0.75, RPIQ = 2.43). Compared with a CNN, ML-CNN can continuously optimize the meta-task, thus improving the performance of the model in small-sample tasks. Compared to the prediction model that combined the recursive feature elimination technique with the random forest model (RFE-RF), ML-CNN can efficiently extract high-level features from time-series data, thus improving the model performance. Compared with that of the global strategy, the RMSE of the LS decreased by 0.20 g kg−1, and R2 and RPIQ increased by 13.00% and 0.22, respectively. In addition, the GMR-MCNN results illustrated that the SOC content in the global Mollisol regions shows a decreasing trend, and the trend can be divided into significant decrease (1984–2000) and moderate decrease (2001−2021) phases. Different products were tested based on laboratory-measured SOC contents, and GMR-MCNN (RMSE = 6.13 g kg−1, R2 = 0.63) displayed better performance than SoilGrids250m (RMSE = 23.37 g kg−1, R2 = 0.28) and the Soil SubCenter map (RMSE = 8.59 g kg−1, R2 = 0.43). The developed methodology can provide a reference for the long-term observation of soil and crop properties at moderate and high resolutions globally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文无敌完成签到,获得积分10
8秒前
上好佳完成签到 ,获得积分10
13秒前
18秒前
19秒前
lucky发布了新的文献求助10
22秒前
李嘉诚完成签到,获得积分10
25秒前
cloud完成签到,获得积分10
26秒前
lucky完成签到,获得积分10
32秒前
渟柠完成签到,获得积分10
38秒前
39秒前
jianwuzhou发布了新的文献求助10
41秒前
46秒前
52秒前
逮劳完成签到 ,获得积分10
58秒前
1分钟前
万邦德完成签到,获得积分10
1分钟前
酷波er应助IdleDoc采纳,获得10
1分钟前
FashionBoy应助南江悍匪采纳,获得10
1分钟前
星辰大海应助小昏采纳,获得10
1分钟前
Akim应助七一藕采纳,获得10
1分钟前
xiaomaihua完成签到 ,获得积分10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得60
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
小昏发布了新的文献求助10
1分钟前
SDNUDRUG完成签到,获得积分10
1分钟前
Hellenzz发布了新的文献求助10
1分钟前
开朗大雁完成签到 ,获得积分10
1分钟前
共享精神应助Zert采纳,获得10
1分钟前
1分钟前
爆米花应助啦啦啦就好采纳,获得10
1分钟前
1分钟前
Hellenzz完成签到,获得积分10
1分钟前
柔弱的纸鹤完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345722
求助须知:如何正确求助?哪些是违规求助? 4480561
关于积分的说明 13946480
捐赠科研通 4378124
什么是DOI,文献DOI怎么找? 2405626
邀请新用户注册赠送积分活动 1398183
关于科研通互助平台的介绍 1370666