SOC content of global Mollisols at a 30 m spatial resolution from 1984 to 2021 generated by the novel ML-CNN prediction model

软土 土壤碳 环境科学 计算机科学 遥感 卷积神经网络 均方误差 土壤科学 土壤水分 人工智能 统计 数学 地质学
作者
Xiangtian Meng,Yilin Bao,Chong Luo,Xinle Zhang,Huanjun Liu
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:300: 113911-113911 被引量:28
标识
DOI:10.1016/j.rse.2023.113911
摘要

Carbon cycle is influenced by agricultural soils, and accurately mapping the soil organic carbon (SOC) content of global Mollisols at a 30 m spatial resolution can contribute to clarifying the carbon sequestration capacity of each region, facilitate the quantification of agroecosystems and contribute to global food security. However, the high heterogeneity of environmental variables in global regions, coupled with the challenges posed by small-sample tasks, creates significant obstacles to producing reliable SOC content datasets. In this study, we collected 191,465 scenes of Landsat TM and OLI images and elevation model data to calculate spectral indices that can represent soil formation information based on a soil-pedogenic model. Second, a local strategy (LS) was proposed to reduce the influence of the high heterogeneity of SOC content and environmental variables on the prediction results. More importantly, the first meta-learning convolutional neural network (ML-CNN) model was proposed. It provides high prediction accuracy for small-sample tasks and was used to generate the first high-resolution global Mollisol region SOC content product (GMR-MCNN). Finally, we compared GMR-MCNN with the existing SoilGrids250m and Soil SubCenter products. The results showed that long-term, high-accuracy and high-resolution prediction of the SOC content in global Mollisol regions was achieved by the ML-CNN model (RMSE = 4.84 g kg−1, R2 = 0.75, RPIQ = 2.43). Compared with a CNN, ML-CNN can continuously optimize the meta-task, thus improving the performance of the model in small-sample tasks. Compared to the prediction model that combined the recursive feature elimination technique with the random forest model (RFE-RF), ML-CNN can efficiently extract high-level features from time-series data, thus improving the model performance. Compared with that of the global strategy, the RMSE of the LS decreased by 0.20 g kg−1, and R2 and RPIQ increased by 13.00% and 0.22, respectively. In addition, the GMR-MCNN results illustrated that the SOC content in the global Mollisol regions shows a decreasing trend, and the trend can be divided into significant decrease (1984–2000) and moderate decrease (2001−2021) phases. Different products were tested based on laboratory-measured SOC contents, and GMR-MCNN (RMSE = 6.13 g kg−1, R2 = 0.63) displayed better performance than SoilGrids250m (RMSE = 23.37 g kg−1, R2 = 0.28) and the Soil SubCenter map (RMSE = 8.59 g kg−1, R2 = 0.43). The developed methodology can provide a reference for the long-term observation of soil and crop properties at moderate and high resolutions globally.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zrl发布了新的文献求助10
1秒前
1秒前
饼干发布了新的文献求助10
2秒前
英吉利25发布了新的文献求助10
2秒前
2秒前
椿椿完成签到,获得积分10
3秒前
3秒前
bkagyin应助不散的和弦采纳,获得10
4秒前
吕士晋完成签到,获得积分20
5秒前
6秒前
烟花应助简单的冬灵采纳,获得10
7秒前
解丽发布了新的文献求助10
7秒前
blur完成签到,获得积分10
9秒前
石奥绅完成签到,获得积分20
9秒前
bkagyin应助yyy采纳,获得10
10秒前
852应助JLLLLLLLL采纳,获得10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
Swii完成签到,获得积分10
13秒前
曹毅凯完成签到,获得积分10
13秒前
14秒前
zrl完成签到,获得积分20
14秒前
研友-wbg-LjbQIL完成签到 ,获得积分10
15秒前
哈哈完成签到 ,获得积分10
15秒前
16秒前
研友_Z6k5Q8完成签到 ,获得积分10
17秒前
zjy发布了新的文献求助10
18秒前
18秒前
18秒前
Inuit发布了新的文献求助10
19秒前
19秒前
20秒前
bkagyin应助WangYZ采纳,获得10
21秒前
自然的方盒完成签到,获得积分20
21秒前
Joni发布了新的文献求助10
21秒前
22秒前
yyy发布了新的文献求助10
22秒前
拉总发布了新的文献求助30
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858