已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SOC content of global Mollisols at a 30 m spatial resolution from 1984 to 2021 generated by the novel ML-CNN prediction model

软土 土壤碳 环境科学 计算机科学 遥感 卷积神经网络 均方误差 土壤科学 土壤水分 人工智能 统计 数学 地质学
作者
Xiangtian Meng,Yilin Bao,Chong Luo,Xinle Zhang,Huanjun Liu
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:300: 113911-113911 被引量:28
标识
DOI:10.1016/j.rse.2023.113911
摘要

Carbon cycle is influenced by agricultural soils, and accurately mapping the soil organic carbon (SOC) content of global Mollisols at a 30 m spatial resolution can contribute to clarifying the carbon sequestration capacity of each region, facilitate the quantification of agroecosystems and contribute to global food security. However, the high heterogeneity of environmental variables in global regions, coupled with the challenges posed by small-sample tasks, creates significant obstacles to producing reliable SOC content datasets. In this study, we collected 191,465 scenes of Landsat TM and OLI images and elevation model data to calculate spectral indices that can represent soil formation information based on a soil-pedogenic model. Second, a local strategy (LS) was proposed to reduce the influence of the high heterogeneity of SOC content and environmental variables on the prediction results. More importantly, the first meta-learning convolutional neural network (ML-CNN) model was proposed. It provides high prediction accuracy for small-sample tasks and was used to generate the first high-resolution global Mollisol region SOC content product (GMR-MCNN). Finally, we compared GMR-MCNN with the existing SoilGrids250m and Soil SubCenter products. The results showed that long-term, high-accuracy and high-resolution prediction of the SOC content in global Mollisol regions was achieved by the ML-CNN model (RMSE = 4.84 g kg−1, R2 = 0.75, RPIQ = 2.43). Compared with a CNN, ML-CNN can continuously optimize the meta-task, thus improving the performance of the model in small-sample tasks. Compared to the prediction model that combined the recursive feature elimination technique with the random forest model (RFE-RF), ML-CNN can efficiently extract high-level features from time-series data, thus improving the model performance. Compared with that of the global strategy, the RMSE of the LS decreased by 0.20 g kg−1, and R2 and RPIQ increased by 13.00% and 0.22, respectively. In addition, the GMR-MCNN results illustrated that the SOC content in the global Mollisol regions shows a decreasing trend, and the trend can be divided into significant decrease (1984–2000) and moderate decrease (2001−2021) phases. Different products were tested based on laboratory-measured SOC contents, and GMR-MCNN (RMSE = 6.13 g kg−1, R2 = 0.63) displayed better performance than SoilGrids250m (RMSE = 23.37 g kg−1, R2 = 0.28) and the Soil SubCenter map (RMSE = 8.59 g kg−1, R2 = 0.43). The developed methodology can provide a reference for the long-term observation of soil and crop properties at moderate and high resolutions globally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助sun采纳,获得10
刚刚
2秒前
2秒前
4秒前
核糖体发布了新的文献求助10
7秒前
浮游应助麻瓜采纳,获得10
8秒前
Bihhh完成签到,获得积分10
9秒前
10秒前
hkf发布了新的文献求助10
14秒前
Bihhh发布了新的文献求助10
15秒前
15秒前
范老师完成签到,获得积分10
16秒前
zhuzhu完成签到 ,获得积分10
17秒前
困困困死了完成签到,获得积分10
18秒前
思源应助迷人皮卡丘采纳,获得10
18秒前
19秒前
19秒前
郑总完成签到 ,获得积分10
20秒前
fred发布了新的文献求助10
20秒前
20秒前
21秒前
科研通AI5应助无情的宛菡采纳,获得10
21秒前
丁丽娜发布了新的文献求助10
24秒前
24秒前
25秒前
天天快乐应助ming采纳,获得10
25秒前
ZC完成签到,获得积分10
26秒前
27秒前
angel发布了新的文献求助10
28秒前
文艺凉面完成签到 ,获得积分10
29秒前
30秒前
情怀应助sun采纳,获得30
30秒前
清风发布了新的文献求助10
32秒前
烟花应助lfq1118采纳,获得10
32秒前
Owen应助科研通管家采纳,获得10
32秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
科研通AI2S应助CHENCHEN采纳,获得10
32秒前
wanci应助科研通管家采纳,获得10
33秒前
隐形曼青应助科研通管家采纳,获得10
33秒前
桐桐应助科研通管家采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4868779
求助须知:如何正确求助?哪些是违规求助? 4160150
关于积分的说明 12900745
捐赠科研通 3914553
什么是DOI,文献DOI怎么找? 2149921
邀请新用户注册赠送积分活动 1168383
关于科研通互助平台的介绍 1070787