SOC content of global Mollisols at a 30 m spatial resolution from 1984 to 2021 generated by the novel ML-CNN prediction model

软土 土壤碳 环境科学 计算机科学 遥感 卷积神经网络 均方误差 土壤科学 土壤水分 人工智能 统计 数学 地质学
作者
Xiangtian Meng,Yilin Bao,Chong Luo,Xinle Zhang,Huanjun Liu
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:300: 113911-113911 被引量:28
标识
DOI:10.1016/j.rse.2023.113911
摘要

Carbon cycle is influenced by agricultural soils, and accurately mapping the soil organic carbon (SOC) content of global Mollisols at a 30 m spatial resolution can contribute to clarifying the carbon sequestration capacity of each region, facilitate the quantification of agroecosystems and contribute to global food security. However, the high heterogeneity of environmental variables in global regions, coupled with the challenges posed by small-sample tasks, creates significant obstacles to producing reliable SOC content datasets. In this study, we collected 191,465 scenes of Landsat TM and OLI images and elevation model data to calculate spectral indices that can represent soil formation information based on a soil-pedogenic model. Second, a local strategy (LS) was proposed to reduce the influence of the high heterogeneity of SOC content and environmental variables on the prediction results. More importantly, the first meta-learning convolutional neural network (ML-CNN) model was proposed. It provides high prediction accuracy for small-sample tasks and was used to generate the first high-resolution global Mollisol region SOC content product (GMR-MCNN). Finally, we compared GMR-MCNN with the existing SoilGrids250m and Soil SubCenter products. The results showed that long-term, high-accuracy and high-resolution prediction of the SOC content in global Mollisol regions was achieved by the ML-CNN model (RMSE = 4.84 g kg−1, R2 = 0.75, RPIQ = 2.43). Compared with a CNN, ML-CNN can continuously optimize the meta-task, thus improving the performance of the model in small-sample tasks. Compared to the prediction model that combined the recursive feature elimination technique with the random forest model (RFE-RF), ML-CNN can efficiently extract high-level features from time-series data, thus improving the model performance. Compared with that of the global strategy, the RMSE of the LS decreased by 0.20 g kg−1, and R2 and RPIQ increased by 13.00% and 0.22, respectively. In addition, the GMR-MCNN results illustrated that the SOC content in the global Mollisol regions shows a decreasing trend, and the trend can be divided into significant decrease (1984–2000) and moderate decrease (2001−2021) phases. Different products were tested based on laboratory-measured SOC contents, and GMR-MCNN (RMSE = 6.13 g kg−1, R2 = 0.63) displayed better performance than SoilGrids250m (RMSE = 23.37 g kg−1, R2 = 0.28) and the Soil SubCenter map (RMSE = 8.59 g kg−1, R2 = 0.43). The developed methodology can provide a reference for the long-term observation of soil and crop properties at moderate and high resolutions globally.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wsy完成签到,获得积分10
刚刚
xue完成签到,获得积分10
刚刚
zdzdz00发布了新的文献求助10
1秒前
QQqq完成签到,获得积分10
1秒前
momi发布了新的文献求助10
1秒前
CipherSage应助清秀寇采纳,获得10
1秒前
冉冉完成签到 ,获得积分0
1秒前
大意的星星完成签到,获得积分10
2秒前
池鱼思故渊完成签到,获得积分10
2秒前
2秒前
小雨完成签到 ,获得积分10
2秒前
meikoo完成签到 ,获得积分10
3秒前
3秒前
lln90发布了新的文献求助10
3秒前
Febrine0502完成签到,获得积分10
4秒前
5秒前
852应助kkkk采纳,获得10
6秒前
6秒前
结实雪卉完成签到,获得积分10
6秒前
6秒前
6秒前
Cloris完成签到,获得积分10
7秒前
星辰大海应助跳跃盼波采纳,获得10
7秒前
meddy完成签到,获得积分10
7秒前
Stone完成签到,获得积分10
8秒前
悲凉的莫言完成签到,获得积分20
8秒前
李健的粉丝团团长应助JIE采纳,获得10
8秒前
8秒前
wayneturner发布了新的文献求助10
8秒前
小Z发布了新的文献求助10
8秒前
怕黑的妍完成签到,获得积分10
9秒前
zengli完成签到 ,获得积分10
9秒前
9秒前
文艺如凡发布了新的文献求助10
9秒前
万能图书馆应助夕荀采纳,获得10
10秒前
fwb发布了新的文献求助10
11秒前
兔兔完成签到,获得积分10
11秒前
韩笑发布了新的文献求助10
11秒前
三月完成签到,获得积分10
11秒前
勤恳马里奥完成签到,获得积分0
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006