BDN-DDI: A bilinear dual-view representation learning framework for drug–drug interaction prediction

双线性插值 计算机科学 代表(政治) 药品 药物与药物的相互作用 下部结构 特征(语言学) 人工智能 特征学习 机器学习 药理学 医学 政治学 工程类 哲学 法学 政治 结构工程 语言学 计算机视觉
作者
Gong Ning,Yuping Sun,Jie Ling,Jijia Chen,Jiaxi He
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:165: 107340-107340 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107340
摘要

Drug-drug interactions (DDIs) refer to the potential effects of two or more drugs interacting with each other when used simultaneously, which may lead to adverse reactions or reduced drug efficacy. Accurate prediction of DDIs is a significant concern in recent years. Currently, the drug chemical substructure-based learning method has substantially improved DDIs prediction. However, we notice that most related works ignore the detailed interaction among atoms when extracting the substructure information of drugs. This problem results in incomplete information extraction and may limit the model's predictive ability. In this work, we proposed a novel framework named BDN-DDI (a bilinear dual-view representation learning framework for drug-drug interaction prediction) to infer potential DDIs. In the proposed framework, the encoder consists of six stacked BDN blocks, each of which extracts the feature representation of drug molecules through a bilinear representation extraction layer. The extracted feature is then used to learn embeddings of drug substructures from the single drug learning layer (intra-layer) and the drug-pair learning layer (inter-layer). Finally, the learned embeddings are fed into a decoder to predict DDI events. Based on our experiments, BDN-DDI has an AUROC value of over 99% for the warm-start task. Additionally, it outperformed the state-of-the-art methods by an average of 3.4% for the cold-start tasks. Finally, our method's effectiveness is further validated by visualizing several case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
啦啦啦完成签到,获得积分20
1秒前
silentJeremy完成签到,获得积分10
1秒前
1秒前
WNL发布了新的文献求助10
1秒前
2秒前
2秒前
玉yu完成签到 ,获得积分10
2秒前
嗯呢完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
4秒前
跳跃难胜发布了新的文献求助10
4秒前
大脸妹完成签到,获得积分10
4秒前
愤怒的源智完成签到 ,获得积分10
5秒前
5秒前
5秒前
ganson完成签到 ,获得积分10
5秒前
5秒前
HopeStar发布了新的文献求助10
6秒前
6秒前
bkagyin应助YL采纳,获得10
7秒前
共享精神应助一直采纳,获得10
7秒前
8秒前
无聊先知完成签到,获得积分10
8秒前
传奇3应助CC采纳,获得10
8秒前
Promise发布了新的文献求助10
8秒前
习习发布了新的文献求助100
9秒前
9秒前
10秒前
someone完成签到,获得积分10
10秒前
10秒前
wanyanjin应助南方姑娘采纳,获得10
10秒前
Star1983发布了新的文献求助10
11秒前
岁月轮回发布了新的文献求助10
11秒前
11秒前
如晴完成签到,获得积分10
11秒前
平淡的芯阳完成签到 ,获得积分10
11秒前
JonyiCheng发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678