BDN-DDI: A bilinear dual-view representation learning framework for drug–drug interaction prediction

双线性插值 计算机科学 代表(政治) 药品 药物与药物的相互作用 下部结构 特征(语言学) 人工智能 特征学习 编码器 机器学习 药理学 医学 操作系统 政治学 工程类 哲学 法学 政治 结构工程 语言学 计算机视觉
作者
G. Ning,Yuping Sun,Jie Ling,Jijia Chen,Jiaxi He
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:165: 107340-107340 被引量:11
标识
DOI:10.1016/j.compbiomed.2023.107340
摘要

Drug-drug interactions (DDIs) refer to the potential effects of two or more drugs interacting with each other when used simultaneously, which may lead to adverse reactions or reduced drug efficacy. Accurate prediction of DDIs is a significant concern in recent years. Currently, the drug chemical substructure-based learning method has substantially improved DDIs prediction. However, we notice that most related works ignore the detailed interaction among atoms when extracting the substructure information of drugs. This problem results in incomplete information extraction and may limit the model's predictive ability. In this work, we proposed a novel framework named BDN-DDI (a bilinear dual-view representation learning framework for drug-drug interaction prediction) to infer potential DDIs. In the proposed framework, the encoder consists of six stacked BDN blocks, each of which extracts the feature representation of drug molecules through a bilinear representation extraction layer. The extracted feature is then used to learn embeddings of drug substructures from the single drug learning layer (intra-layer) and the drug-pair learning layer (inter-layer). Finally, the learned embeddings are fed into a decoder to predict DDI events. Based on our experiments, BDN-DDI has an AUROC value of over 99% for the warm-start task. Additionally, it outperformed the state-of-the-art methods by an average of 3.4% for the cold-start tasks. Finally, our method's effectiveness is further validated by visualizing several case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助LiuXinping采纳,获得10
刚刚
Jinna706发布了新的文献求助10
刚刚
Ray发布了新的文献求助10
1秒前
干净玉米发布了新的文献求助30
1秒前
dyauuu完成签到 ,获得积分10
1秒前
锦2022发布了新的文献求助10
1秒前
1秒前
一地狗粮完成签到,获得积分10
1秒前
suki发布了新的文献求助20
1秒前
恭喜发财完成签到,获得积分10
1秒前
局内人发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
CARL完成签到,获得积分10
2秒前
充电宝应助奋斗的珍采纳,获得10
3秒前
4秒前
TT完成签到,获得积分20
4秒前
阿妤发布了新的文献求助10
4秒前
Cindy发布了新的文献求助10
5秒前
小蘑菇应助小江采纳,获得10
5秒前
5秒前
123完成签到,获得积分10
6秒前
文静若南完成签到,获得积分20
6秒前
乐乐应助局内人采纳,获得10
6秒前
叶财财完成签到,获得积分10
7秒前
DQ发布了新的文献求助10
7秒前
三月完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
杨哈哈完成签到,获得积分10
8秒前
清爽妙竹应助jasmine19919采纳,获得10
9秒前
舒屿望迷完成签到,获得积分10
9秒前
10秒前
10秒前
干净玉米完成签到,获得积分20
10秒前
杨哈哈发布了新的文献求助10
10秒前
10秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951972
求助须知:如何正确求助?哪些是违规求助? 3497327
关于积分的说明 11086901
捐赠科研通 3228016
什么是DOI,文献DOI怎么找? 1784585
邀请新用户注册赠送积分活动 868794
科研通“疑难数据库(出版商)”最低求助积分说明 801180