Assessing urban wetlands dynamics in Wuhan and Nanchang, China

湿地 中国 环境科学 地理 水文学(农业) 自然地理学 生态学 地质学 生物 考古 岩土工程
作者
Ying Deng,Zhenfeng Shao,Chaoya Dang,Xiao Huang,Wenfu Wu,Qingwei Zhuang,Qing Ding
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:901: 165777-165777 被引量:5
标识
DOI:10.1016/j.scitotenv.2023.165777
摘要

Urban wetlands play a crucial role in sustainable social development. However, current research mainly focuses on specific wetland types, and fine extraction of urban wetlands remains a challenge. This study proposes a fine extraction framework based on hierarchical decision trees and shape features for urban wetlands, using Sentinel-2 remote sensing data to obtain detailed wetland data of Wuhan and Nanchang from 2016 to 2022. Our framework applies random forests to classify land cover, extracts urban fine wetlands by hierarchical decision trees and shape features, and assesses the dynamics of wetlands in the two cities. We also analyzed and discussed the characteristics of urban wetlands in the two cities. The results show that wetland accuracies of Wuhan and Nanchang are greater than 84.5 % and 82.9 %, respectively. The wetland areas of Wuhan in 2016, 2019, and 2022 are 1969.4 km2, 1713.8 km2, and 1681.1 km2, while those in Nanchang are 1405.9 km2, 1361.6 km2, and 766.9 km2. Inland wetlands are the main wetland types in both regions, with lake wetlands accounting for the highest proportion (over 40 %). The urban wetlands in the two cities exhibit different spatial and temporal evolution patterns, with varying change trends of wetland area and the structural proportions of fine wetlands. Besides, Wuhan's urban wetlands are primarily located in the south, while Nanchang's urban wetlands are concentrated in the east, exhibiting higher spatial and temporal dynamics. Analysis suggests that the reduced urban wetlands from 2016 to 2022 are related to fluctuating decreasing precipitation, growing population, and gross domestic product (GDP). Our study provides support for the conservation of urban wetland resources in Wuhan and Nanchang and highlights the need for targeted management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
clock完成签到 ,获得积分10
刚刚
虫二先生完成签到 ,获得积分10
刚刚
甜甜的难敌完成签到,获得积分10
1秒前
1秒前
2秒前
小潘同学完成签到,获得积分10
2秒前
2秒前
科研通AI5应助传统的海露采纳,获得10
3秒前
学术刘亦菲完成签到,获得积分10
3秒前
成就的烧鹅完成签到,获得积分20
3秒前
4秒前
dd发布了新的文献求助10
4秒前
luoshi应助leon采纳,获得30
5秒前
5秒前
wang完成签到,获得积分10
5秒前
可爱的函函应助hu采纳,获得10
5秒前
5秒前
我测你码关注了科研通微信公众号
6秒前
下课了吧发布了新的文献求助10
6秒前
jy发布了新的文献求助10
6秒前
绘梨衣完成签到,获得积分10
7秒前
数据线完成签到,获得积分10
7秒前
完美世界应助甜甜的难敌采纳,获得30
8秒前
满堂花醉三千客完成签到 ,获得积分10
8秒前
8秒前
8秒前
gao完成签到,获得积分10
9秒前
LiuRuizhe完成签到,获得积分10
9秒前
绘梨衣发布了新的文献求助10
9秒前
9秒前
10秒前
淡定紫菱发布了新的文献求助10
11秒前
李繁蕊发布了新的文献求助10
13秒前
万能图书馆应助愉快寄真采纳,获得10
13秒前
Rrr发布了新的文献求助10
13秒前
14秒前
14秒前
高兴藏花发布了新的文献求助10
14秒前
15秒前
顾闭月发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794