Short- and Medium-Term Electricity Consumption Forecasting Using Prophet and GRU

消费(社会学) 能源消耗 计算机科学 期限(时间) 多元统计 人工智能 机器学习 工程类 社会科学 量子力学 电气工程 物理 社会学
作者
Nam-Rye Son,Yoonjeong Shin
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:15 (22): 15860-15860 被引量:4
标识
DOI:10.3390/su152215860
摘要

Electricity consumption forecasting plays a crucial role in improving energy efficiency, ensuring stable power supply, reducing energy costs, optimizing facility management, and promoting environmental conservation. Accurate predictions help optimize energy system operations, reduce energy wastage, cut costs, and decrease carbon emissions. Consequently, the research on electricity consumption forecasting algorithms is thriving. However, to overcome challenges like data imbalances, data quality issues, seasonal variations, and event handling, recent forecasting models employ various approaches, including probability and statistics, machine learning, and deep learning. This study proposes a short- and medium-term electricity consumption prediction algorithm by combining the GRU model suitable for long-term forecasting and the Prophet model suitable for seasonality and event handling. (1) The preprocessed data propose the Prophet model in the first step for seasonality and event handling prediction. (2) In the second step, seven multivariate data are experimented with using GRU. Specifically, the seven multivariate data consist of six meteorological data and the residuals between the predicted data from the proposed Prophet model in Step 1 and the observed data. These are utilized to predict electricity consumption at 15 min intervals. (3) Electricity consumption is predicted for short-term (2 days and 7 days) and medium-term (15 days and 30 days) scenarios. The proposed approach outperforms both the Prophet and GRU models, reducing prediction errors and offering valuable insights into electricity consumption patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eurhfe发布了新的文献求助10
刚刚
aloe发布了新的文献求助10
1秒前
老实的百招完成签到,获得积分10
1秒前
waoller1发布了新的文献求助10
1秒前
1秒前
2秒前
乐观的小土豆完成签到 ,获得积分10
2秒前
在水一方应助YG97采纳,获得10
3秒前
自由的青槐完成签到 ,获得积分10
3秒前
3秒前
丘比特应助萍123采纳,获得10
4秒前
卓妮完成签到,获得积分10
5秒前
6秒前
6秒前
zyp发布了新的文献求助10
7秒前
风中晓霜发布了新的文献求助10
7秒前
8秒前
洛城l发布了新的文献求助10
8秒前
gsd完成签到,获得积分10
8秒前
科研通AI6应助科研白白采纳,获得10
8秒前
8秒前
ddup发布了新的文献求助10
9秒前
95完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助150
10秒前
丘比特应助nikaido采纳,获得10
10秒前
11秒前
ding应助Becca采纳,获得50
11秒前
干净翠发布了新的文献求助10
11秒前
无极微光应助成广宇采纳,获得20
11秒前
11秒前
小全发布了新的文献求助30
11秒前
xiangxl完成签到,获得积分10
11秒前
12秒前
12秒前
万能图书馆应助林雨采纳,获得10
12秒前
12秒前
烟花应助失眠的耳机采纳,获得10
13秒前
小李完成签到,获得积分10
13秒前
vict完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Wolbachia-mediated fitness enhancement and reproductive manipulation in the South American tomato pinworm, Tuta absoluta 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098963
求助须知:如何正确求助?哪些是违规求助? 4311031
关于积分的说明 13433121
捐赠科研通 4138388
什么是DOI,文献DOI怎么找? 2267214
邀请新用户注册赠送积分活动 1270282
关于科研通互助平台的介绍 1206556