Short- and Medium-Term Electricity Consumption Forecasting Using Prophet and GRU

消费(社会学) 能源消耗 计算机科学 期限(时间) 多元统计 人工智能 机器学习 工程类 社会科学 物理 量子力学 社会学 电气工程
作者
Nam-Rye Son,Yoonjeong Shin
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:15 (22): 15860-15860 被引量:4
标识
DOI:10.3390/su152215860
摘要

Electricity consumption forecasting plays a crucial role in improving energy efficiency, ensuring stable power supply, reducing energy costs, optimizing facility management, and promoting environmental conservation. Accurate predictions help optimize energy system operations, reduce energy wastage, cut costs, and decrease carbon emissions. Consequently, the research on electricity consumption forecasting algorithms is thriving. However, to overcome challenges like data imbalances, data quality issues, seasonal variations, and event handling, recent forecasting models employ various approaches, including probability and statistics, machine learning, and deep learning. This study proposes a short- and medium-term electricity consumption prediction algorithm by combining the GRU model suitable for long-term forecasting and the Prophet model suitable for seasonality and event handling. (1) The preprocessed data propose the Prophet model in the first step for seasonality and event handling prediction. (2) In the second step, seven multivariate data are experimented with using GRU. Specifically, the seven multivariate data consist of six meteorological data and the residuals between the predicted data from the proposed Prophet model in Step 1 and the observed data. These are utilized to predict electricity consumption at 15 min intervals. (3) Electricity consumption is predicted for short-term (2 days and 7 days) and medium-term (15 days and 30 days) scenarios. The proposed approach outperforms both the Prophet and GRU models, reducing prediction errors and offering valuable insights into electricity consumption patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ste56完成签到,获得积分10
2秒前
ED应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
利利应助科研通管家采纳,获得10
5秒前
5秒前
ED应助科研通管家采纳,获得10
5秒前
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
yookia应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得30
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得30
5秒前
tiantian完成签到,获得积分10
11秒前
打打应助我要发nature采纳,获得10
12秒前
札七发布了新的文献求助10
12秒前
wasfey完成签到,获得积分10
14秒前
小韩同学完成签到,获得积分10
19秒前
依依发布了新的文献求助10
21秒前
迷你的小兔子完成签到,获得积分10
24秒前
24秒前
CX完成签到,获得积分10
25秒前
26秒前
kk完成签到,获得积分10
26秒前
哎哟很烦完成签到,获得积分10
27秒前
打打应助Sience采纳,获得10
28秒前
ZL完成签到,获得积分10
28秒前
XM发布了新的文献求助10
30秒前
朝菌完成签到,获得积分10
30秒前
鱼儿乐园完成签到 ,获得积分10
31秒前
32秒前
羊咩咩发布了新的文献求助10
33秒前
34秒前
Owen应助超帅连虎采纳,获得30
39秒前
NexusExplorer应助超帅连虎采纳,获得30
39秒前
39秒前
ZYQ完成签到 ,获得积分10
39秒前
ttzziy完成签到 ,获得积分10
40秒前
XM发布了新的文献求助10
40秒前
40秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961020
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134825
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790305
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150