A novel strategy for key gene identification in hypertrophic cardiomyopathy based on cuproptosis and multiple WGCNA analyses

肥厚性心肌病 医学 计算生物学 基因 微阵列分析技术 疾病 生物信息学 遗传学 基因表达 生物 内科学
作者
Yang Xiao,Rong Pan,Zhiwu An,Qian Liu,Shenghua Zhou
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:44 (Supplement_2)
标识
DOI:10.1093/eurheartj/ehad655.1854
摘要

Abstract Background Hypertrophic cardiomyopathy (HCM) is a potentially fatal disease, and early diagnosis is crucial for effective treatment. Microarray analysis and the discovery of cuproptosis, a new form of cell death, offer new possibilities for identifying potential biomarkers for early diagnosis. Purpose This study aimed to identify cuproptosis-related genes associated with HCM and potential biomarkers for early diagnosis using machine learning. Methods Expression data of cuproptosis-related genes were extracted from the GSE36961 dataset, and differential expression analysis was conducted. Immune infiltration analyses were also performed. Samples were categorized into two clusters, and cluster weighted gene coexpression network analysis (WGCNA) was performed based on HCM and cluster clinical data. The results were combined to develop the best machine learning model, which was verified through calibration and external validation (GSE1145 and GSE32453). Results Cuproptosis-related genes (NLRP3, ATP7B, ATP7A, SLC31A1, LIAS, LIPT1, DLD, DLAT, PDHB, and DBT) were differentially expressed between HCM and control samples. Five key genes (TSPAN12, ANP32C, C4ORF18, COL21A1, and HMGB2) were identified, which showed great efficiency in the diagnosis of HCM in external validation, with an AUC of 0.948. These genes may play critical roles in megakaryocyte differentiation, RAGE receptor binding, and protein digestion and absorption. Conclusions Cuproptosis-related genes may play significant roles in HCM, and TSPAN12, ANP32C, C4ORF18, COL21A1, and HMGB2 may be potential biomarkers for the early diagnosis of HCM. This study provides new insights for further research on HCM diagnosis and treatment.Flow chart of research designEvaluation and verification results
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助钟山采纳,获得10
8秒前
8秒前
10秒前
egggg发布了新的文献求助20
11秒前
11秒前
包尚易发布了新的文献求助30
11秒前
深情安青应助hh采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
SciGPT应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
无极微光应助科研通管家采纳,获得20
15秒前
Hello应助科研通管家采纳,获得30
15秒前
Criminology34应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
16秒前
浮游应助求助采纳,获得10
16秒前
haodong发布了新的文献求助20
16秒前
17秒前
romy发布了新的文献求助30
17秒前
冷静的忆秋完成签到,获得积分10
18秒前
空城完成签到 ,获得积分10
21秒前
21秒前
21秒前
箜箜完成签到,获得积分20
22秒前
淡定的迎梦完成签到,获得积分10
22秒前
领导范儿应助A1phaYi采纳,获得10
25秒前
25秒前
27秒前
小猪猪发布了新的文献求助30
27秒前
28秒前
Chen完成签到 ,获得积分10
28秒前
29秒前
慕青应助gguc采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431754
求助须知:如何正确求助?哪些是违规求助? 4544599
关于积分的说明 14193134
捐赠科研通 4463678
什么是DOI,文献DOI怎么找? 2446845
邀请新用户注册赠送积分活动 1438154
关于科研通互助平台的介绍 1414878