A novel strategy for key gene identification in hypertrophic cardiomyopathy based on cuproptosis and multiple WGCNA analyses

肥厚性心肌病 医学 计算生物学 基因 微阵列分析技术 疾病 生物信息学 遗传学 基因表达 生物 内科学
作者
Yang Xiao,Rong Pan,Zhiwu An,Qian Liu,Shenghua Zhou
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:44 (Supplement_2)
标识
DOI:10.1093/eurheartj/ehad655.1854
摘要

Abstract Background Hypertrophic cardiomyopathy (HCM) is a potentially fatal disease, and early diagnosis is crucial for effective treatment. Microarray analysis and the discovery of cuproptosis, a new form of cell death, offer new possibilities for identifying potential biomarkers for early diagnosis. Purpose This study aimed to identify cuproptosis-related genes associated with HCM and potential biomarkers for early diagnosis using machine learning. Methods Expression data of cuproptosis-related genes were extracted from the GSE36961 dataset, and differential expression analysis was conducted. Immune infiltration analyses were also performed. Samples were categorized into two clusters, and cluster weighted gene coexpression network analysis (WGCNA) was performed based on HCM and cluster clinical data. The results were combined to develop the best machine learning model, which was verified through calibration and external validation (GSE1145 and GSE32453). Results Cuproptosis-related genes (NLRP3, ATP7B, ATP7A, SLC31A1, LIAS, LIPT1, DLD, DLAT, PDHB, and DBT) were differentially expressed between HCM and control samples. Five key genes (TSPAN12, ANP32C, C4ORF18, COL21A1, and HMGB2) were identified, which showed great efficiency in the diagnosis of HCM in external validation, with an AUC of 0.948. These genes may play critical roles in megakaryocyte differentiation, RAGE receptor binding, and protein digestion and absorption. Conclusions Cuproptosis-related genes may play significant roles in HCM, and TSPAN12, ANP32C, C4ORF18, COL21A1, and HMGB2 may be potential biomarkers for the early diagnosis of HCM. This study provides new insights for further research on HCM diagnosis and treatment.Flow chart of research designEvaluation and verification results
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuyue发布了新的文献求助10
1秒前
qqqq发布了新的文献求助10
1秒前
wy.he应助bingbing采纳,获得10
1秒前
丘比特应助San_Chen采纳,获得10
1秒前
Jouleken完成签到,获得积分10
2秒前
上官尔芙完成签到,获得积分10
3秒前
3秒前
哈哈2022完成签到,获得积分10
3秒前
李李完成签到,获得积分10
5秒前
灯火完成签到,获得积分10
5秒前
wen完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
小象完成签到,获得积分10
6秒前
华仔应助木木三采纳,获得10
6秒前
7秒前
沉默画板完成签到 ,获得积分10
7秒前
有风的地方完成签到 ,获得积分10
7秒前
卡卡罗特先森完成签到 ,获得积分10
7秒前
ailyna发布了新的文献求助10
8秒前
8秒前
8秒前
ctomit发布了新的文献求助200
8秒前
bingbing完成签到,获得积分10
9秒前
朱建军应助yoyoo采纳,获得10
9秒前
斯文败类应助yyyy采纳,获得30
9秒前
haokeyan完成签到,获得积分10
10秒前
10秒前
fan发布了新的文献求助10
10秒前
lieditongxu发布了新的文献求助10
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
一年5篇发布了新的文献求助10
12秒前
baekhyun发布了新的文献求助10
12秒前
果果完成签到,获得积分10
13秒前
小光光鸡鸡爆完成签到 ,获得积分10
13秒前
zxy完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016703
求助须知:如何正确求助?哪些是违规求助? 3556823
关于积分的说明 11322708
捐赠科研通 3289505
什么是DOI,文献DOI怎么找? 1812495
邀请新用户注册赠送积分活动 888064
科研通“疑难数据库(出版商)”最低求助积分说明 812086