Can ChatGPT provide appropriate meal plans for NCD patients?

餐食 医学 肥胖 工作(物理) 环境卫生 老年学 计算机科学 内科学 机械工程 工程类
作者
Ilias Papastratis,Andreas Stergioulas,Dimitrios Konstantinidis,Petros Daras,Kosmas Dimitropoulos
出处
期刊:Nutrition [Elsevier]
卷期号:121: 112291-112291 被引量:7
标识
DOI:10.1016/j.nut.2023.112291
摘要

Dietary habits significantly affect health conditions and are closely related to the onset and progression of non-communicable diseases (NCDs). Consequently, a well-balanced diet plays an important role in lessening the effects of various disorders, including NCDs. Several artificial intelligence recommendation systems have been developed to propose healthy and nutritious diets. Most of these systems use expert knowledge and guidelines to provide tailored diets and encourage healthier eating habits. However, new advances in large language models such as ChatGPT, with their ability to produce human-like responses, have led individuals to search for advice in several tasks, including diet recommendations. This study aimed to determine the ability of ChatGPT models to generate appropriate personalized meal plans for patients with obesity, cardiovascular diseases, and type 2 diabetes. Using a state-of-the-art knowledge-based recommendation system as a reference, we assessed the meal plans generated by two large language models in terms of energy intake, nutrient accuracy, and meal variability. Experimental results with different user profiles revealed the potential of ChatGPT models to provide personalized nutritional advice. Additional supervision and guidance by nutrition experts or knowledge-based systems are required to ensure meal appropriateness for users with NCDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_nEoBP8发布了新的文献求助30
刚刚
yuqianyuan完成签到,获得积分20
1秒前
2秒前
noyal完成签到,获得积分10
2秒前
张小馨完成签到 ,获得积分10
3秒前
Sifan完成签到,获得积分10
3秒前
完美世界应助李向来采纳,获得10
3秒前
Jasper应助jzyy采纳,获得10
3秒前
乐观化蛹完成签到,获得积分10
4秒前
5秒前
lsq108发布了新的文献求助10
6秒前
神勇秋白完成签到,获得积分0
8秒前
muyingleng应助轻松金鱼采纳,获得20
8秒前
悦影徜徉完成签到 ,获得积分10
9秒前
大模型应助xiaogang127采纳,获得10
9秒前
香蕉觅云应助xiaogang127采纳,获得10
9秒前
传奇3应助xiaogang127采纳,获得10
10秒前
SciGPT应助xiaogang127采纳,获得30
10秒前
bkagyin应助xiaogang127采纳,获得10
10秒前
董浩应助田田田田采纳,获得10
10秒前
三土完成签到,获得积分10
10秒前
汉堡包应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351649
求助须知:如何正确求助?哪些是违规求助? 2977118
关于积分的说明 8677840
捐赠科研通 2658157
什么是DOI,文献DOI怎么找? 1455504
科研通“疑难数据库(出版商)”最低求助积分说明 674001
邀请新用户注册赠送积分活动 664503