亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Financial fraud detection using graph neural networks: A systematic review

计算机科学 图形 人工神经网络 人工智能 机器学习 理论计算机科学
作者
Soroor Motie,Bijan Raahemi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122156-122156 被引量:42
标识
DOI:10.1016/j.eswa.2023.122156
摘要

Financial fraud is a persistent problem in the finance industry that may have severe consequences for individuals, businesses, and economies. Graph Neural Networks (GNNs) are a class of deep learning models designed to operate on graph data structures that consist of nodes and edges connecting them. GNNs have emerged as a powerful tool for detecting fraudulent activities in complex financial systems because they can analyze the network structure of financial transactions, capturing patterns and anomalies that traditional rule-based and machine learning methods might miss. The objective of this systematic review is to provide a comprehensive overview of the current state-of-the-art technologies in using Graph Neural Networks (GNNs) for financial fraud detection, identify the gaps and limitations in the existing research, and suggest potential directions for future research. We searched five academic databases, including Web of Science, Scopus, IEEE Xplore, ACM, and science direct using specific keywords and search strings related to graph neural networks, financial areas, and anomaly detection to identify relevant publications, resulting in a total of 388 unique articles. We selected the relevant publications based on the inclusion, exclusion, and quality assessment criteria, and 33 articles were included in the review. In addition, forward snowballing was used to identify relevant papers that were not captured in the initial search. Data was extracted from the selected articles, then analyzed and summarized to identify current state, gaps, and trends in the literature. Our review presents a new taxonomy of GNNs applied in financial fraud detection and identifies potential research directions in this field. We find that GNNs applied to financial fraud detection have mostly been employed in a supervised or semi-supervised manner, with limited exploration of unsupervised approaches. In addition to financial areas, we explore the different types of graphs such as homogeneous, heterogenous, static, temporal, and dynamic graphs, and investigate the various learning mechanisms and anomaly types studied. We also note a lack of research on edge-level and graph-level anomaly detection commonly employed in financial domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
5秒前
隐形曼青应助科研小贩采纳,获得10
6秒前
ranj完成签到,获得积分10
14秒前
上官若男应助金水相生采纳,获得10
16秒前
32秒前
调皮千兰发布了新的文献求助10
36秒前
40秒前
47秒前
58秒前
1分钟前
sujiaoziemo完成签到,获得积分10
1分钟前
zzw18512467916完成签到,获得积分10
1分钟前
1分钟前
完美世界应助调皮千兰采纳,获得10
1分钟前
乐乐应助赵振辉采纳,获得10
1分钟前
yang发布了新的文献求助10
1分钟前
bdsb完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
2分钟前
华仔应助复方蛋酥卷采纳,获得10
2分钟前
CJH104完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
调皮千兰发布了新的文献求助10
2分钟前
赵振辉发布了新的文献求助10
2分钟前
2分钟前
科研通AI6应助调皮千兰采纳,获得10
3分钟前
科研女仆完成签到 ,获得积分10
3分钟前
复方蛋酥卷完成签到,获得积分10
3分钟前
3分钟前
金水相生发布了新的文献求助10
3分钟前
3分钟前
金水相生完成签到,获得积分10
4分钟前
4分钟前
yang发布了新的文献求助10
4分钟前
唐唐完成签到 ,获得积分10
4分钟前
宁赴湘完成签到 ,获得积分10
4分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658010
求助须知:如何正确求助?哪些是违规求助? 4815993
关于积分的说明 15080791
捐赠科研通 4816301
什么是DOI,文献DOI怎么找? 2577280
邀请新用户注册赠送积分活动 1532288
关于科研通互助平台的介绍 1490890