Financial fraud detection using graph neural networks: A systematic review

计算机科学 图形 人工神经网络 人工智能 机器学习 理论计算机科学
作者
Soroor Motie,Bijan Raahemi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122156-122156 被引量:7
标识
DOI:10.1016/j.eswa.2023.122156
摘要

Financial fraud is a persistent problem in the finance industry that may have severe consequences for individuals, businesses, and economies. Graph Neural Networks (GNNs) are a class of deep learning models designed to operate on graph data structures that consist of nodes and edges connecting them. GNNs have emerged as a powerful tool for detecting fraudulent activities in complex financial systems because they can analyze the network structure of financial transactions, capturing patterns and anomalies that traditional rule-based and machine learning methods might miss. The objective of this systematic review is to provide a comprehensive overview of the current state-of-the-art technologies in using Graph Neural Networks (GNNs) for financial fraud detection, identify the gaps and limitations in the existing research, and suggest potential directions for future research. We searched five academic databases, including Web of Science, Scopus, IEEE Xplore, ACM, and science direct using specific keywords and search strings related to graph neural networks, financial areas, and anomaly detection to identify relevant publications, resulting in a total of 388 unique articles. We selected the relevant publications based on the inclusion, exclusion, and quality assessment criteria, and 33 articles were included in the review. In addition, forward snowballing was used to identify relevant papers that were not captured in the initial search. Data was extracted from the selected articles, then analyzed and summarized to identify current state, gaps, and trends in the literature. Our review presents a new taxonomy of GNNs applied in financial fraud detection and identifies potential research directions in this field. We find that GNNs applied to financial fraud detection have mostly been employed in a supervised or semi-supervised manner, with limited exploration of unsupervised approaches. In addition to financial areas, we explore the different types of graphs such as homogeneous, heterogenous, static, temporal, and dynamic graphs, and investigate the various learning mechanisms and anomaly types studied. We also note a lack of research on edge-level and graph-level anomaly detection commonly employed in financial domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助linciko采纳,获得10
1秒前
1秒前
Lin发布了新的文献求助10
2秒前
2秒前
yanna应助Yan采纳,获得10
3秒前
零花钱发布了新的文献求助10
4秒前
4秒前
科目三应助zhangling采纳,获得10
4秒前
Owen应助zhangling采纳,获得10
4秒前
大模型应助zhangling采纳,获得10
4秒前
从容芮应助机智绝悟采纳,获得10
5秒前
七七完成签到,获得积分10
5秒前
194711发布了新的文献求助10
6秒前
花花完成签到,获得积分10
6秒前
Owen应助阿琳采纳,获得10
7秒前
7秒前
Lion发布了新的文献求助10
8秒前
8秒前
李爱国应助善良凝芙采纳,获得10
9秒前
chen123完成签到,获得积分10
9秒前
冬狩完成签到,获得积分10
10秒前
追光少年发布了新的文献求助10
12秒前
孙新月完成签到 ,获得积分20
12秒前
zxdlala完成签到,获得积分20
13秒前
13秒前
FashionBoy应助Cyber_relic采纳,获得10
13秒前
ColdSpring完成签到,获得积分10
13秒前
六瓶完成签到,获得积分10
15秒前
15秒前
权志龙发布了新的文献求助10
15秒前
zhangling发布了新的文献求助10
16秒前
青思发布了新的文献求助10
18秒前
19秒前
科研通AI2S应助唐山恶少采纳,获得10
19秒前
19秒前
六瓶发布了新的文献求助10
20秒前
20秒前
mei完成签到,获得积分10
21秒前
晚秋发布了新的文献求助10
25秒前
云氲给云氲的求助进行了留言
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160802
求助须知:如何正确求助?哪些是违规求助? 2811883
关于积分的说明 7893940
捐赠科研通 2470842
什么是DOI,文献DOI怎么找? 1315775
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053