Financial fraud detection using graph neural networks: A systematic review

计算机科学 图形 人工神经网络 人工智能 机器学习 理论计算机科学
作者
Soroor Motie,Bijan Raahemi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122156-122156 被引量:42
标识
DOI:10.1016/j.eswa.2023.122156
摘要

Financial fraud is a persistent problem in the finance industry that may have severe consequences for individuals, businesses, and economies. Graph Neural Networks (GNNs) are a class of deep learning models designed to operate on graph data structures that consist of nodes and edges connecting them. GNNs have emerged as a powerful tool for detecting fraudulent activities in complex financial systems because they can analyze the network structure of financial transactions, capturing patterns and anomalies that traditional rule-based and machine learning methods might miss. The objective of this systematic review is to provide a comprehensive overview of the current state-of-the-art technologies in using Graph Neural Networks (GNNs) for financial fraud detection, identify the gaps and limitations in the existing research, and suggest potential directions for future research. We searched five academic databases, including Web of Science, Scopus, IEEE Xplore, ACM, and science direct using specific keywords and search strings related to graph neural networks, financial areas, and anomaly detection to identify relevant publications, resulting in a total of 388 unique articles. We selected the relevant publications based on the inclusion, exclusion, and quality assessment criteria, and 33 articles were included in the review. In addition, forward snowballing was used to identify relevant papers that were not captured in the initial search. Data was extracted from the selected articles, then analyzed and summarized to identify current state, gaps, and trends in the literature. Our review presents a new taxonomy of GNNs applied in financial fraud detection and identifies potential research directions in this field. We find that GNNs applied to financial fraud detection have mostly been employed in a supervised or semi-supervised manner, with limited exploration of unsupervised approaches. In addition to financial areas, we explore the different types of graphs such as homogeneous, heterogenous, static, temporal, and dynamic graphs, and investigate the various learning mechanisms and anomaly types studied. We also note a lack of research on edge-level and graph-level anomaly detection commonly employed in financial domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助听话的清采纳,获得10
刚刚
1秒前
Grace发布了新的文献求助10
1秒前
a'mao'men完成签到,获得积分10
2秒前
2秒前
2秒前
上官若男应助XUXU采纳,获得10
2秒前
越越发布了新的文献求助10
2秒前
清脆的机器猫完成签到,获得积分10
2秒前
DrKe完成签到,获得积分10
3秒前
3秒前
临澈发布了新的文献求助20
3秒前
Xdz完成签到,获得积分10
3秒前
suibiao发布了新的文献求助10
4秒前
panpanh发布了新的文献求助10
4秒前
Galaxy完成签到,获得积分10
4秒前
NexusExplorer应助RianaSun采纳,获得10
5秒前
科研通AI2S应助Luobing采纳,获得10
5秒前
SciGPT应助ZZW采纳,获得10
5秒前
木由子完成签到,获得积分10
5秒前
胡俊发布了新的文献求助20
5秒前
zhenglei9058发布了新的文献求助10
6秒前
6秒前
WWW完成签到 ,获得积分10
6秒前
雪花发布了新的文献求助10
6秒前
yue完成签到 ,获得积分10
6秒前
小二郎应助齐鸿轩采纳,获得10
6秒前
鳗鱼绿蝶发布了新的文献求助10
7秒前
sunny完成签到,获得积分10
8秒前
彭于晏应助彩色的夏瑶采纳,获得10
8秒前
科研通AI6应助change采纳,获得10
8秒前
猴子请来的救兵完成签到 ,获得积分10
8秒前
8秒前
淡然胡萝卜完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
泉水激石完成签到,获得积分10
10秒前
洁净笙发布了新的文献求助30
10秒前
Xdz发布了新的文献求助10
10秒前
激昂的丹彤完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511083
求助须知:如何正确求助?哪些是违规求助? 4605828
关于积分的说明 14495709
捐赠科研通 4540975
什么是DOI,文献DOI怎么找? 2488254
邀请新用户注册赠送积分活动 1470413
关于科研通互助平台的介绍 1442806