Financial fraud detection using graph neural networks: A systematic review

计算机科学 图形 人工神经网络 人工智能 机器学习 理论计算机科学
作者
Soroor Motie,Bijan Raahemi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122156-122156 被引量:42
标识
DOI:10.1016/j.eswa.2023.122156
摘要

Financial fraud is a persistent problem in the finance industry that may have severe consequences for individuals, businesses, and economies. Graph Neural Networks (GNNs) are a class of deep learning models designed to operate on graph data structures that consist of nodes and edges connecting them. GNNs have emerged as a powerful tool for detecting fraudulent activities in complex financial systems because they can analyze the network structure of financial transactions, capturing patterns and anomalies that traditional rule-based and machine learning methods might miss. The objective of this systematic review is to provide a comprehensive overview of the current state-of-the-art technologies in using Graph Neural Networks (GNNs) for financial fraud detection, identify the gaps and limitations in the existing research, and suggest potential directions for future research. We searched five academic databases, including Web of Science, Scopus, IEEE Xplore, ACM, and science direct using specific keywords and search strings related to graph neural networks, financial areas, and anomaly detection to identify relevant publications, resulting in a total of 388 unique articles. We selected the relevant publications based on the inclusion, exclusion, and quality assessment criteria, and 33 articles were included in the review. In addition, forward snowballing was used to identify relevant papers that were not captured in the initial search. Data was extracted from the selected articles, then analyzed and summarized to identify current state, gaps, and trends in the literature. Our review presents a new taxonomy of GNNs applied in financial fraud detection and identifies potential research directions in this field. We find that GNNs applied to financial fraud detection have mostly been employed in a supervised or semi-supervised manner, with limited exploration of unsupervised approaches. In addition to financial areas, we explore the different types of graphs such as homogeneous, heterogenous, static, temporal, and dynamic graphs, and investigate the various learning mechanisms and anomaly types studied. We also note a lack of research on edge-level and graph-level anomaly detection commonly employed in financial domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈镜阿姐应助动次打次采纳,获得10
刚刚
李洁完成签到,获得积分10
刚刚
刚刚
xsc完成签到,获得积分10
1秒前
xiaomi发布了新的文献求助10
2秒前
加油女王完成签到,获得积分10
2秒前
于冰清完成签到,获得积分10
2秒前
猪猪猪完成签到,获得积分20
3秒前
3秒前
芪苓完成签到,获得积分20
4秒前
wyz完成签到,获得积分20
4秒前
4秒前
Mic应助XHX采纳,获得10
5秒前
5秒前
深情安青应助www采纳,获得10
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
顾矜应助明理的绮南采纳,获得10
6秒前
无可反驳发布了新的文献求助10
6秒前
7秒前
Maxine完成签到 ,获得积分10
7秒前
我没钱完成签到 ,获得积分10
7秒前
wwwwww完成签到,获得积分20
7秒前
是赵先森呀完成签到 ,获得积分10
8秒前
Wguan发布了新的文献求助10
9秒前
10秒前
Hello应助嘿嘿啊哈采纳,获得10
10秒前
10秒前
淡淡化蛹发布了新的文献求助30
11秒前
科研一号发布了新的文献求助10
11秒前
努力学习完成签到,获得积分10
12秒前
没有下不到的文献完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
烟花应助bmj采纳,获得10
13秒前
大模型应助坦率晓霜采纳,获得10
14秒前
14秒前
14秒前
pluto应助ichia采纳,获得10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695131
求助须知:如何正确求助?哪些是违规求助? 5100385
关于积分的说明 15215391
捐赠科研通 4851561
什么是DOI,文献DOI怎么找? 2602454
邀请新用户注册赠送积分活动 1554227
关于科研通互助平台的介绍 1512186