已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Financial fraud detection using graph neural networks: A systematic review

计算机科学 图形 人工神经网络 人工智能 机器学习 理论计算机科学
作者
Soroor Motie,Bijan Raahemi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122156-122156 被引量:42
标识
DOI:10.1016/j.eswa.2023.122156
摘要

Financial fraud is a persistent problem in the finance industry that may have severe consequences for individuals, businesses, and economies. Graph Neural Networks (GNNs) are a class of deep learning models designed to operate on graph data structures that consist of nodes and edges connecting them. GNNs have emerged as a powerful tool for detecting fraudulent activities in complex financial systems because they can analyze the network structure of financial transactions, capturing patterns and anomalies that traditional rule-based and machine learning methods might miss. The objective of this systematic review is to provide a comprehensive overview of the current state-of-the-art technologies in using Graph Neural Networks (GNNs) for financial fraud detection, identify the gaps and limitations in the existing research, and suggest potential directions for future research. We searched five academic databases, including Web of Science, Scopus, IEEE Xplore, ACM, and science direct using specific keywords and search strings related to graph neural networks, financial areas, and anomaly detection to identify relevant publications, resulting in a total of 388 unique articles. We selected the relevant publications based on the inclusion, exclusion, and quality assessment criteria, and 33 articles were included in the review. In addition, forward snowballing was used to identify relevant papers that were not captured in the initial search. Data was extracted from the selected articles, then analyzed and summarized to identify current state, gaps, and trends in the literature. Our review presents a new taxonomy of GNNs applied in financial fraud detection and identifies potential research directions in this field. We find that GNNs applied to financial fraud detection have mostly been employed in a supervised or semi-supervised manner, with limited exploration of unsupervised approaches. In addition to financial areas, we explore the different types of graphs such as homogeneous, heterogenous, static, temporal, and dynamic graphs, and investigate the various learning mechanisms and anomaly types studied. We also note a lack of research on edge-level and graph-level anomaly detection commonly employed in financial domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云笙完成签到 ,获得积分10
刚刚
李雨欣完成签到,获得积分10
1秒前
共享精神应助皮代谷采纳,获得10
2秒前
香蕉觅云应助tleeny采纳,获得10
3秒前
4秒前
在水一方应助勤恳的妙旋采纳,获得30
5秒前
mm完成签到 ,获得积分10
5秒前
Hum6le完成签到,获得积分10
5秒前
脑洞疼应助小明采纳,获得10
8秒前
脑洞疼应助abcd采纳,获得10
9秒前
云笙关注了科研通微信公众号
9秒前
希望天下0贩的0应助zyyyyyy采纳,获得10
9秒前
堇瓜发布了新的文献求助10
10秒前
彭于晏应助体贴茗采纳,获得10
10秒前
shawn完成签到 ,获得积分10
12秒前
CipherSage应助无情的宛儿采纳,获得10
13秒前
13秒前
舒服的水壶完成签到,获得积分10
14秒前
明理薯片完成签到,获得积分10
14秒前
14秒前
专注的芷完成签到 ,获得积分10
15秒前
隐形曼青应助温良恭俭让采纳,获得10
15秒前
FashionBoy应助积极的老鼠采纳,获得10
16秒前
干净巧荷发布了新的文献求助10
16秒前
17秒前
Ava应助oaix采纳,获得10
17秒前
汉堡包应助wenduoxu采纳,获得10
17秒前
zz完成签到,获得积分10
17秒前
17秒前
sobergod完成签到 ,获得积分10
18秒前
走心君完成签到,获得积分10
19秒前
风中的天蓝完成签到 ,获得积分10
20秒前
zz发布了新的文献求助10
20秒前
lili发布了新的文献求助10
21秒前
zyyyyyy发布了新的文献求助10
21秒前
沥青拌蛋黄完成签到,获得积分10
22秒前
23秒前
23秒前
可不完成签到,获得积分10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879