Financial fraud detection using graph neural networks: A systematic review

计算机科学 图形 人工神经网络 人工智能 机器学习 理论计算机科学
作者
Soroor Motie,Bijan Raahemi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122156-122156 被引量:42
标识
DOI:10.1016/j.eswa.2023.122156
摘要

Financial fraud is a persistent problem in the finance industry that may have severe consequences for individuals, businesses, and economies. Graph Neural Networks (GNNs) are a class of deep learning models designed to operate on graph data structures that consist of nodes and edges connecting them. GNNs have emerged as a powerful tool for detecting fraudulent activities in complex financial systems because they can analyze the network structure of financial transactions, capturing patterns and anomalies that traditional rule-based and machine learning methods might miss. The objective of this systematic review is to provide a comprehensive overview of the current state-of-the-art technologies in using Graph Neural Networks (GNNs) for financial fraud detection, identify the gaps and limitations in the existing research, and suggest potential directions for future research. We searched five academic databases, including Web of Science, Scopus, IEEE Xplore, ACM, and science direct using specific keywords and search strings related to graph neural networks, financial areas, and anomaly detection to identify relevant publications, resulting in a total of 388 unique articles. We selected the relevant publications based on the inclusion, exclusion, and quality assessment criteria, and 33 articles were included in the review. In addition, forward snowballing was used to identify relevant papers that were not captured in the initial search. Data was extracted from the selected articles, then analyzed and summarized to identify current state, gaps, and trends in the literature. Our review presents a new taxonomy of GNNs applied in financial fraud detection and identifies potential research directions in this field. We find that GNNs applied to financial fraud detection have mostly been employed in a supervised or semi-supervised manner, with limited exploration of unsupervised approaches. In addition to financial areas, we explore the different types of graphs such as homogeneous, heterogenous, static, temporal, and dynamic graphs, and investigate the various learning mechanisms and anomaly types studied. We also note a lack of research on edge-level and graph-level anomaly detection commonly employed in financial domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助独特的翠芙采纳,获得10
1秒前
qwp完成签到,获得积分10
1秒前
完美世界应助风汐5423采纳,获得10
2秒前
张菁钊完成签到,获得积分10
2秒前
3秒前
Stacey完成签到,获得积分10
3秒前
Apple发布了新的文献求助10
5秒前
大方向真完成签到,获得积分10
6秒前
岁岁菌完成签到,获得积分10
6秒前
sddsd发布了新的文献求助30
6秒前
7秒前
清秀的麦片完成签到,获得积分10
7秒前
shouz发布了新的文献求助10
7秒前
7秒前
8秒前
脑洞疼应助mmmxxf采纳,获得10
9秒前
10秒前
10秒前
机智念芹完成签到,获得积分20
10秒前
YCmf完成签到,获得积分10
11秒前
令狐贤弟发布了新的文献求助10
11秒前
11秒前
13秒前
13秒前
13秒前
YCmf发布了新的文献求助10
13秒前
机灵班应助自由梦槐采纳,获得20
14秒前
机智念芹发布了新的文献求助10
14秒前
馍夹菜完成签到,获得积分10
14秒前
14秒前
陶醉的水彤完成签到,获得积分10
15秒前
888完成签到,获得积分10
15秒前
tier完成签到,获得积分10
15秒前
wickedzz完成签到,获得积分0
16秒前
16秒前
Apple完成签到,获得积分10
16秒前
17秒前
是阿瑾呀完成签到 ,获得积分10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297261
求助须知:如何正确求助?哪些是违规求助? 4446159
关于积分的说明 13838669
捐赠科研通 4331314
什么是DOI,文献DOI怎么找? 2377555
邀请新用户注册赠送积分活动 1372811
关于科研通互助平台的介绍 1338355