Financial fraud detection using graph neural networks: A systematic review

计算机科学 图形 人工神经网络 人工智能 机器学习 理论计算机科学
作者
Soroor Motie,Bijan Raahemi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122156-122156 被引量:42
标识
DOI:10.1016/j.eswa.2023.122156
摘要

Financial fraud is a persistent problem in the finance industry that may have severe consequences for individuals, businesses, and economies. Graph Neural Networks (GNNs) are a class of deep learning models designed to operate on graph data structures that consist of nodes and edges connecting them. GNNs have emerged as a powerful tool for detecting fraudulent activities in complex financial systems because they can analyze the network structure of financial transactions, capturing patterns and anomalies that traditional rule-based and machine learning methods might miss. The objective of this systematic review is to provide a comprehensive overview of the current state-of-the-art technologies in using Graph Neural Networks (GNNs) for financial fraud detection, identify the gaps and limitations in the existing research, and suggest potential directions for future research. We searched five academic databases, including Web of Science, Scopus, IEEE Xplore, ACM, and science direct using specific keywords and search strings related to graph neural networks, financial areas, and anomaly detection to identify relevant publications, resulting in a total of 388 unique articles. We selected the relevant publications based on the inclusion, exclusion, and quality assessment criteria, and 33 articles were included in the review. In addition, forward snowballing was used to identify relevant papers that were not captured in the initial search. Data was extracted from the selected articles, then analyzed and summarized to identify current state, gaps, and trends in the literature. Our review presents a new taxonomy of GNNs applied in financial fraud detection and identifies potential research directions in this field. We find that GNNs applied to financial fraud detection have mostly been employed in a supervised or semi-supervised manner, with limited exploration of unsupervised approaches. In addition to financial areas, we explore the different types of graphs such as homogeneous, heterogenous, static, temporal, and dynamic graphs, and investigate the various learning mechanisms and anomaly types studied. We also note a lack of research on edge-level and graph-level anomaly detection commonly employed in financial domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leeSongha完成签到 ,获得积分10
刚刚
1秒前
LEle发布了新的文献求助10
1秒前
情怀应助科研小白采纳,获得10
2秒前
3秒前
Jack祺完成签到 ,获得积分10
4秒前
4秒前
小二郎应助Darling采纳,获得10
4秒前
周至发布了新的文献求助30
5秒前
二枫忆桑完成签到,获得积分10
5秒前
别叫我吃饭饭饭完成签到 ,获得积分10
5秒前
5秒前
唐文硕发布了新的文献求助10
5秒前
5秒前
郭郭发布了新的文献求助10
6秒前
小马甲应助zzzpf采纳,获得10
7秒前
9秒前
华仔应助CXJ采纳,获得10
9秒前
wangzilu发布了新的文献求助50
9秒前
郭亮完成签到 ,获得积分20
9秒前
ghx发布了新的文献求助10
11秒前
顾矜应助ballball233采纳,获得10
11秒前
wang11完成签到,获得积分10
12秒前
初空月儿完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助30
13秒前
爆米花应助管夜白采纳,获得10
13秒前
寒冷寻桃发布了新的文献求助10
14秒前
xcltzh2517完成签到,获得积分10
15秒前
15秒前
大个应助唐文硕采纳,获得10
15秒前
pig120完成签到 ,获得积分10
16秒前
lllllll完成签到,获得积分10
16秒前
星辰大海应助shiyongkang1采纳,获得20
19秒前
善学以致用应助多情如容采纳,获得10
19秒前
唐文硕完成签到,获得积分10
20秒前
qzz完成签到,获得积分10
20秒前
20秒前
20秒前
yan完成签到,获得积分10
22秒前
怜然完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735045
求助须知:如何正确求助?哪些是违规求助? 5358060
关于积分的说明 15328419
捐赠科研通 4879484
什么是DOI,文献DOI怎么找? 2621957
邀请新用户注册赠送积分活动 1571152
关于科研通互助平台的介绍 1527932