锂(药物)
阳极
材料科学
氧化还原
插层(化学)
微晶
扩散
化学工程
电极
储能
纳米技术
离子
同步加速器
无机化学
化学
冶金
医学
功率(物理)
物理
有机化学
物理化学
量子力学
工程类
热力学
内分泌学
核物理学
作者
Jiantao Li,Guangwu Hu,Ruohan Yu,Xiaobin Liao,Kangning Zhao,Tianyi Li,Jiexin Zhu,Qiang Chen,Dong Su,Yang Ren,Khalil Amine,Liqiang Mai,Liang Zhou,Jun Lü
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-10-30
卷期号:17 (21): 21604-21613
被引量:3
标识
DOI:10.1021/acsnano.3c06684
摘要
TiO2 is a widely recognized intercalation anode material for lithium-ion batteries (LIBs), yet its practical capacity is kinetically constrained due to sluggish lithium-ion diffusion, leading to a lithiation number of less than 1.0 Li+ (336 mAh g–1). Here, the growth of TiO2 crystallites is restrained by integrating Si into the TiO2 framework, thereby enhancing the charge transfer and creating additional active sites potentially residing at grain boundaries for Li+ storage. This strategy is corroborated by the expanded redox range of Ti, as thoroughly demonstrated via synchrotron radiation-based X-ray spectroscopy and Cs-corrected electron microscopy. Consequently, when deployed for lithium storage, the tailored material achieves an extraordinarily high reversible capacity of 559 mAh g–1, 116% of the theoretical maximum of 483 mAh g–1 calculated based on all active species, while simultaneously retaining superior rate capability and robust cycling stability. This work offers fresh perspectives on the revitalization of traditional electrode materials to achieve enhanced capacities.
科研通智能强力驱动
Strongly Powered by AbleSci AI