亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-scale context UNet-like network with redesigned skip connections for medical image segmentation

分割 计算机科学 背景(考古学) 特征(语言学) 编码器 修剪 比例(比率) 人工智能 图像分割 可扩展性 模式识别(心理学) 数据挖掘 数据库 语言学 哲学 物理 量子力学 农学 生物 操作系统 古生物学
作者
Ledan Qian,Caiyun Wen,Yi Li,Zhongyi Hu,Xiao Zhou,Xiaonyu Xia,Soo-Hyung Kim
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:243: 107885-107885 被引量:21
标识
DOI:10.1016/j.cmpb.2023.107885
摘要

Medical image segmentation has garnered significant research attention in the neural network community as a fundamental requirement for developing intelligent medical assistant systems. A series of UNet-like networks with an encoder-decoder architecture have achieved remarkable success in medical image segmentation. Among these networks, UNet2+ (UNet++) and UNet3+ (UNet+++) have introduced redesigned skip connections, dense skip connections, and full-scale skip connections, respectively, surpassing the performance of the original UNet. However, UNet2+ lacks comprehensive information obtained from the entire scale, which hampers its ability to learn organ placement and boundaries. Similarly, due to the limited number of neurons in its structure, UNet3+ fails to effectively segment small objects when trained with a small number of samples.In this study, we propose UNet_sharp (UNet#), a novel network topology named after the "#" symbol, which combines dense skip connections and full-scale skip connections. In the decoder sub-network, UNet# can effectively integrate feature maps of different scales and capture fine-grained features and coarse-grained semantics from the entire scale. This approach enhances the understanding of organ and lesion positions and enables accurate boundary segmentation. We employ deep supervision for model pruning to accelerate testing and enable mobile device deployment. Additionally, we construct two classification-guided modules to reduce false positives and improve segmentation accuracy.Compared to current UNet-like networks, our proposed method achieves the highest Intersection over Union (IoU) values ((92.67±0.96)%, (92.38±1.29)%, (95.36±1.22)%, (74.01±2.03)%) and F1 scores ((91.64±1.86)%, (95.70±2.16)%, (97.34±2.76)%, (84.77±2.65)%) on the semantic segmentation tasks of nuclei, brain tumors, liver, and lung nodules, respectively.The experimental results demonstrate that the reconstructed skip connections in UNet successfully incorporate multi-scale contextual semantic information. Compared to most state-of-the-art medical image segmentation models, our proposed method more accurately locates organs and lesions and precisely segments boundaries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27秒前
dengxu发布了新的文献求助10
32秒前
dengxu完成签到,获得积分10
38秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
归尘应助科研通管家采纳,获得10
41秒前
桐桐应助科研通管家采纳,获得10
42秒前
44秒前
52秒前
受伤白猫发布了新的文献求助10
57秒前
受伤白猫完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
summer完成签到,获得积分20
2分钟前
2分钟前
summer发布了新的文献求助10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助宣若剑采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
ZhuYJ完成签到,获得积分10
4分钟前
ZhuYJ发布了新的文献求助10
4分钟前
香蕉觅云应助ZhuYJ采纳,获得10
4分钟前
lzxbarry完成签到,获得积分0
4分钟前
4分钟前
zyb完成签到 ,获得积分10
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
Tumumu完成签到,获得积分10
5分钟前
分你一半完成签到 ,获得积分10
6分钟前
6分钟前
Yummy完成签到,获得积分10
6分钟前
Yummy发布了新的文献求助10
6分钟前
归尘应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
归尘应助科研通管家采纳,获得10
6分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307439
求助须知:如何正确求助?哪些是违规求助? 2941053
关于积分的说明 8500304
捐赠科研通 2615430
什么是DOI,文献DOI怎么找? 1428901
科研通“疑难数据库(出版商)”最低求助积分说明 663595
邀请新用户注册赠送积分活动 648461