Hyperbolic hierarchical knowledge graph embeddings for biological entities

嵌入 计算机科学 双曲空间 理论计算机科学 语义学(计算机科学) 图形 编码 欧几里得空间 欧几里德距离 数据挖掘 人工智能 数学 纯数学 基因 化学 生物化学 程序设计语言
作者
Nan Li,Zhihao Yang,Yongrong Yang,Jian Wang,Hongfei Lin
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:147: 104503-104503 被引量:2
标识
DOI:10.1016/j.jbi.2023.104503
摘要

Predicting relationships between biological entities can greatly benefit important biomedical problems. Previous studies have attempted to represent biological entities and relationships in Euclidean space using embedding methods, which evaluate their semantic similarity by representing entities as numerical vectors. However, the limitation of these methods is that they cannot prevent the loss of latent hierarchical information when embedding large graph-structured data into Euclidean space, and therefore cannot capture the semantics of entities and relationships accurately. Hyperbolic spaces, such as Poincaré ball, are better suited for hierarchical modeling than Euclidean spaces. This is because hyperbolic spaces exhibit negative curvature, causing distances to grow exponentially as they approach the boundary. In this paper, we propose HEM, a hyperbolic hierarchical knowledge graph embedding model to generate vector representations of bio-entities. By encoding the entities and relations in the hyperbolic space, HEM can capture latent hierarchical information and improve the accuracy of biological entity representation. Notably, HEM can preserve rich information with a low dimension compared with the methods that encode entities in Euclidean space. Furthermore, we explore the performance of HEM in protein–protein interaction prediction and gene-disease association prediction tasks. Experimental results demonstrate the superior performance of HEM over state-of-the-art baselines. The data and code are available at : https://github.com/Nan-ll/HEM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助ZZP27采纳,获得10
刚刚
1秒前
SevenKing完成签到,获得积分10
1秒前
wisdom应助Vashon采纳,获得10
2秒前
2秒前
lc发布了新的文献求助10
2秒前
snow发布了新的文献求助10
3秒前
Jasper应助曲夜白采纳,获得10
3秒前
烟花应助service winner采纳,获得10
3秒前
orixero应助monkey采纳,获得10
4秒前
4秒前
爆米花应助真理采纳,获得10
5秒前
Jasper应助SevenKing采纳,获得10
6秒前
文艺初雪发布了新的文献求助30
8秒前
深情安青应助ylj1531585955采纳,获得10
8秒前
9秒前
9秒前
斯文败类应助wangkeke采纳,获得10
9秒前
9秒前
11秒前
11秒前
雪白的稀发布了新的文献求助10
12秒前
拼搏遥完成签到,获得积分20
12秒前
13秒前
sg完成签到,获得积分10
13秒前
whb666完成签到,获得积分10
13秒前
无花果应助snow采纳,获得10
15秒前
拼搏遥发布了新的文献求助10
15秒前
1Aaa发布了新的文献求助10
17秒前
852应助雪白的稀采纳,获得10
18秒前
19秒前
12发布了新的文献求助10
19秒前
April完成签到,获得积分10
19秒前
juwish完成签到,获得积分10
19秒前
CodeCraft应助简单起眸采纳,获得10
20秒前
Morri发布了新的文献求助50
20秒前
20秒前
香蕉觅云应助火山羊采纳,获得10
21秒前
21秒前
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 900
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313400
求助须知:如何正确求助?哪些是违规求助? 2945747
关于积分的说明 8526962
捐赠科研通 2621480
什么是DOI,文献DOI怎么找? 1433622
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650600