Hyperbolic hierarchical knowledge graph embeddings for biological entities

嵌入 计算机科学 双曲空间 理论计算机科学 语义学(计算机科学) 图形 编码 欧几里得空间 欧几里德距离 数据挖掘 人工智能 数学 纯数学 生物化学 化学 基因 程序设计语言
作者
Nan Li,Zhihao Yang,Yongrong Yang,Jian Wang,Hongfei Lin
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:147: 104503-104503 被引量:2
标识
DOI:10.1016/j.jbi.2023.104503
摘要

Predicting relationships between biological entities can greatly benefit important biomedical problems. Previous studies have attempted to represent biological entities and relationships in Euclidean space using embedding methods, which evaluate their semantic similarity by representing entities as numerical vectors. However, the limitation of these methods is that they cannot prevent the loss of latent hierarchical information when embedding large graph-structured data into Euclidean space, and therefore cannot capture the semantics of entities and relationships accurately. Hyperbolic spaces, such as Poincaré ball, are better suited for hierarchical modeling than Euclidean spaces. This is because hyperbolic spaces exhibit negative curvature, causing distances to grow exponentially as they approach the boundary. In this paper, we propose HEM, a hyperbolic hierarchical knowledge graph embedding model to generate vector representations of bio-entities. By encoding the entities and relations in the hyperbolic space, HEM can capture latent hierarchical information and improve the accuracy of biological entity representation. Notably, HEM can preserve rich information with a low dimension compared with the methods that encode entities in Euclidean space. Furthermore, we explore the performance of HEM in protein–protein interaction prediction and gene-disease association prediction tasks. Experimental results demonstrate the superior performance of HEM over state-of-the-art baselines. The data and code are available at : https://github.com/Nan-ll/HEM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xinc完成签到,获得积分10
刚刚
Mikey_Teng发布了新的文献求助10
刚刚
RJ123456完成签到,获得积分10
刚刚
斯文败类应助彩色立辉采纳,获得10
刚刚
1秒前
Eureka完成签到 ,获得积分10
1秒前
ZIVON完成签到,获得积分10
1秒前
1秒前
1秒前
斯文败类应助幸福五采纳,获得10
1秒前
幻影发布了新的文献求助10
1秒前
1秒前
bob完成签到,获得积分10
1秒前
科研通AI5应助TN采纳,获得10
1秒前
李清杰发布了新的文献求助10
1秒前
lj完成签到,获得积分10
1秒前
2秒前
啦啦啦完成签到,获得积分20
2秒前
天真的雨完成签到,获得积分10
2秒前
3秒前
lcy完成签到,获得积分10
3秒前
4秒前
4秒前
激情的乌龟完成签到,获得积分10
4秒前
大模型应助苦行僧采纳,获得10
4秒前
兰球完成签到 ,获得积分10
4秒前
5秒前
ZZZ发布了新的文献求助10
5秒前
5秒前
东邪西毒加任我行完成签到,获得积分10
6秒前
甜美三娘完成签到,获得积分10
6秒前
LZYNG发布了新的文献求助10
6秒前
渡鸦发布了新的文献求助30
6秒前
6秒前
7秒前
yvonnecao完成签到,获得积分10
7秒前
夜半芜凉完成签到,获得积分10
7秒前
eeven完成签到 ,获得积分10
7秒前
西部菱斑响尾蛇完成签到,获得积分10
7秒前
鳗鱼绿蝶发布了新的文献求助10
8秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5150811
求助须知:如何正确求助?哪些是违规求助? 4346573
关于积分的说明 13533545
捐赠科研通 4189288
什么是DOI,文献DOI怎么找? 2297425
邀请新用户注册赠送积分活动 1297790
关于科研通互助平台的介绍 1242353