Learnable Cross-modal Knowledge Distillation for Multi-modal Learning with Missing Modality

模式 模态(人机交互) 计算机科学 情态动词 人工智能 特征(语言学) 机器学习 任务(项目管理) 分割 代表(政治) 自然语言处理 模式识别(心理学) 高分子化学 社会科学 语言学 化学 哲学 管理 社会学 政治 政治学 法学 经济
作者
Hu Wang,Congbo Ma,Jianpeng Zhang,Yuan Zhang,Jodie Avery,M. Louise Hull,Gustavo Carneiro
出处
期刊:Lecture Notes in Computer Science 卷期号:: 216-226 被引量:6
标识
DOI:10.1007/978-3-031-43901-8_21
摘要

The problem of missing modalities is both critical and non-trivial to be handled in multi-modal models. It is common for multi-modal tasks that certain modalities contribute more compared to other modalities, and if those important modalities are missing, the model performance drops significantly. Such fact remains unexplored by current multi-modal approaches that recover the representation from missing modalities by feature reconstruction or blind feature aggregation from other modalities, instead of extracting useful information from the best performing modalities. In this paper, we propose a Learnable Cross-modal Knowledge Distillation (LCKD) model to adaptively identify important modalities and distil knowledge from them to help other modalities from the cross-modal perspective for solving the missing modality issue. Our approach introduces a teacher election procedure to select the most "qualified" teachers based on their single modality performance on certain tasks. Then, cross-modal knowledge distillation is performed between teacher and student modalities for each task to push the model parameters to a point that is beneficial for all tasks. Hence, even if the teacher modalities for certain tasks are missing during testing, the available student modalities can accomplish the task well enough based on the learned knowledge from their automatically elected teacher modalities. Experiments on the Brain Tumour Segmentation Dataset 2018 (BraTS2018) shows that LCKD outperforms other methods by a considerable margin, improving the state-of-the-art performance by 3.61% for enhancing tumour, 5.99% for tumour core, and 3.76% for whole tumour in terms of segmentation Dice score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FP完成签到 ,获得积分10
1秒前
2秒前
Jero发布了新的文献求助10
3秒前
4秒前
5秒前
Ava应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
wu8577应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得100
6秒前
wu8577应助科研通管家采纳,获得10
6秒前
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
6秒前
wu8577应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
ANG发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
LuoPanpan完成签到,获得积分10
9秒前
9秒前
缓慢荔枝应助文件撤销了驳回
9秒前
msy发布了新的文献求助10
11秒前
一只特立独行的朱完成签到,获得积分10
11秒前
wang发布了新的文献求助10
14秒前
14秒前
简单的笑蓝完成签到 ,获得积分10
14秒前
csr完成签到,获得积分10
18秒前
24秒前
msy完成签到,获得积分10
24秒前
焜少完成签到,获得积分10
26秒前
26秒前
27秒前
阿童木完成签到,获得积分10
28秒前
ZZL应助野性的沉鱼采纳,获得20
28秒前
嘻嘻哈哈完成签到 ,获得积分10
30秒前
Orange应助博修采纳,获得30
33秒前
SciGPT应助LQ采纳,获得10
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962340
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141064
捐赠科研通 3241149
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803382