Mask R-CNN based multiclass segmentation model for endotracheal intubation using video laryngoscope

气管插管 插管 电子喉镜 医学 计算机科学 气管插管 分割 人工智能 麻醉 气管插管
作者
Seung Jae Choi,Dae Kon Kim,Byeong Soo Kim,Minwoo Cho,Joo Seong Jeong,You Hwan Jo,Kyoung Jun Song,Yu Jin Kim,Sungwan Kim
出处
期刊:Digital health [SAGE]
卷期号:9 被引量:3
标识
DOI:10.1177/20552076231211547
摘要

Endotracheal intubation (ETI) is critical to secure the airway in emergent situations. Although artificial intelligence algorithms are frequently used to analyze medical images, their application to evaluating intraoral structures based on images captured during emergent ETI remains limited. The aim of this study is to develop an artificial intelligence model for segmenting structures in the oral cavity using video laryngoscope (VL) images.From 54 VL videos, clinicians manually labeled images that include motion blur, foggy vision, blood, mucus, and vomitus. Anatomical structures of interest included the tongue, epiglottis, vocal cord, and corniculate cartilage. EfficientNet-B5 with DeepLabv3+, EffecientNet-B5 with U-Net, and Configured Mask R-Convolution Neural Network (CNN) were used; EffecientNet-B5 was pretrained on ImageNet. Dice similarity coefficient (DSC) was used to measure the segmentation performance of the model. Accuracy, recall, specificity, and F1 score were used to evaluate the model's performance in targeting the structure from the value of the intersection over union between the ground truth and prediction mask.The DSC of tongue, epiglottis, vocal cord, and corniculate cartilage obtained from the EfficientNet-B5 with DeepLabv3+, EfficientNet-B5 with U-Net, and Configured Mask R-CNN model were 0.3351/0.7675/0.766/0.6539, 0.0/0.7581/0.7395/0.6906, and 0.1167/0.7677/0.7207/0.57, respectively. Furthermore, the processing speeds (frames per second) of the three models stood at 3, 24, and 32, respectively.The algorithm developed in this study can assist medical providers performing ETI in emergent situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长期素食完成签到,获得积分10
刚刚
刚刚
自由香魔发布了新的文献求助10
2秒前
Naturie发布了新的文献求助10
5秒前
Owen应助陶辞采纳,获得10
6秒前
7秒前
8秒前
9秒前
9秒前
10秒前
大模型应助Meihi_Uesugi采纳,获得10
10秒前
TL发布了新的文献求助10
12秒前
搜集达人应助Rita采纳,获得10
12秒前
13秒前
李纪磊发布了新的文献求助10
14秒前
14秒前
迷人三德发布了新的文献求助10
15秒前
躺平研究生完成签到,获得积分10
16秒前
17秒前
17秒前
chen发布了新的文献求助10
17秒前
18秒前
科研通AI2S应助christy采纳,获得10
18秒前
18秒前
研友_Zr2mxZ完成签到,获得积分10
19秒前
呼噜噜发布了新的文献求助10
20秒前
20秒前
jevon应助冬05采纳,获得10
20秒前
斯文败类应助向往采纳,获得10
21秒前
23秒前
23秒前
23秒前
24秒前
离枝完成签到,获得积分10
24秒前
24秒前
哇哈哈完成签到 ,获得积分20
24秒前
韩不二完成签到,获得积分10
25秒前
莫言发布了新的文献求助10
25秒前
英俊的铭应助迷人三德采纳,获得10
26秒前
邓稳发布了新的文献求助10
26秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206929
求助须知:如何正确求助?哪些是违规求助? 2856304
关于积分的说明 8103836
捐赠科研通 2521393
什么是DOI,文献DOI怎么找? 1354579
科研通“疑难数据库(出版商)”最低求助积分说明 642050
邀请新用户注册赠送积分活动 613277