Mask R-CNN based multiclass segmentation model for endotracheal intubation using video laryngoscope

气管插管 插管 电子喉镜 医学 计算机科学 气管插管 分割 人工智能 麻醉 气管插管
作者
Seung Jae Choi,Dae Kon Kim,Byeong Soo Kim,Minwoo Cho,Joo Seong Jeong,You Hwan Jo,Kyoung Jun Song,Yu Jin Kim,Sungwan Kim
出处
期刊:Digital health [SAGE]
卷期号:9 被引量:3
标识
DOI:10.1177/20552076231211547
摘要

Endotracheal intubation (ETI) is critical to secure the airway in emergent situations. Although artificial intelligence algorithms are frequently used to analyze medical images, their application to evaluating intraoral structures based on images captured during emergent ETI remains limited. The aim of this study is to develop an artificial intelligence model for segmenting structures in the oral cavity using video laryngoscope (VL) images.From 54 VL videos, clinicians manually labeled images that include motion blur, foggy vision, blood, mucus, and vomitus. Anatomical structures of interest included the tongue, epiglottis, vocal cord, and corniculate cartilage. EfficientNet-B5 with DeepLabv3+, EffecientNet-B5 with U-Net, and Configured Mask R-Convolution Neural Network (CNN) were used; EffecientNet-B5 was pretrained on ImageNet. Dice similarity coefficient (DSC) was used to measure the segmentation performance of the model. Accuracy, recall, specificity, and F1 score were used to evaluate the model's performance in targeting the structure from the value of the intersection over union between the ground truth and prediction mask.The DSC of tongue, epiglottis, vocal cord, and corniculate cartilage obtained from the EfficientNet-B5 with DeepLabv3+, EfficientNet-B5 with U-Net, and Configured Mask R-CNN model were 0.3351/0.7675/0.766/0.6539, 0.0/0.7581/0.7395/0.6906, and 0.1167/0.7677/0.7207/0.57, respectively. Furthermore, the processing speeds (frames per second) of the three models stood at 3, 24, and 32, respectively.The algorithm developed in this study can assist medical providers performing ETI in emergent situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
张牧之完成签到 ,获得积分10
刚刚
yuyukeke完成签到,获得积分10
1秒前
1秒前
沉默的婴完成签到 ,获得积分10
1秒前
2秒前
3秒前
Dita完成签到,获得积分10
3秒前
惠惠发布了新的文献求助10
3秒前
脑洞疼应助lan采纳,获得10
4秒前
5秒前
成就的笑南完成签到 ,获得积分10
6秒前
偷狗的小月亮完成签到,获得积分10
6秒前
爱吃泡芙完成签到,获得积分10
6秒前
ysl完成签到,获得积分10
7秒前
7秒前
爆米花应助pipge采纳,获得30
7秒前
彻底完成签到,获得积分10
8秒前
9秒前
韋晴完成签到,获得积分10
10秒前
10秒前
12秒前
领导范儿应助wenjian采纳,获得10
12秒前
12秒前
奇拉维特完成签到 ,获得积分10
12秒前
13秒前
Apple发布了新的文献求助10
13秒前
wtg完成签到,获得积分10
13秒前
在水一方应助Sheila采纳,获得10
14秒前
英姑应助YE采纳,获得30
14秒前
ysl发布了新的文献求助30
14秒前
14秒前
cilan完成签到 ,获得积分10
17秒前
义气的妙松完成签到,获得积分10
17秒前
yangjing发布了新的文献求助10
18秒前
rosexu发布了新的文献求助10
18秒前
盘尼西林发布了新的文献求助10
19秒前
科研通AI2S应助我是125采纳,获得10
19秒前
李健的小迷弟应助arkamar采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808