Mask R-CNN based multiclass segmentation model for endotracheal intubation using video laryngoscope

气管插管 插管 电子喉镜 医学 计算机科学 气管插管 分割 人工智能 麻醉 气管插管
作者
Seung Jae Choi,Dae Kon Kim,Byeong Soo Kim,Minwoo Cho,Joo Seong Jeong,You Hwan Jo,Kyoung Jun Song,Yu Jin Kim,Sungwan Kim
出处
期刊:Digital health [SAGE Publishing]
卷期号:9 被引量:3
标识
DOI:10.1177/20552076231211547
摘要

Endotracheal intubation (ETI) is critical to secure the airway in emergent situations. Although artificial intelligence algorithms are frequently used to analyze medical images, their application to evaluating intraoral structures based on images captured during emergent ETI remains limited. The aim of this study is to develop an artificial intelligence model for segmenting structures in the oral cavity using video laryngoscope (VL) images.From 54 VL videos, clinicians manually labeled images that include motion blur, foggy vision, blood, mucus, and vomitus. Anatomical structures of interest included the tongue, epiglottis, vocal cord, and corniculate cartilage. EfficientNet-B5 with DeepLabv3+, EffecientNet-B5 with U-Net, and Configured Mask R-Convolution Neural Network (CNN) were used; EffecientNet-B5 was pretrained on ImageNet. Dice similarity coefficient (DSC) was used to measure the segmentation performance of the model. Accuracy, recall, specificity, and F1 score were used to evaluate the model's performance in targeting the structure from the value of the intersection over union between the ground truth and prediction mask.The DSC of tongue, epiglottis, vocal cord, and corniculate cartilage obtained from the EfficientNet-B5 with DeepLabv3+, EfficientNet-B5 with U-Net, and Configured Mask R-CNN model were 0.3351/0.7675/0.766/0.6539, 0.0/0.7581/0.7395/0.6906, and 0.1167/0.7677/0.7207/0.57, respectively. Furthermore, the processing speeds (frames per second) of the three models stood at 3, 24, and 32, respectively.The algorithm developed in this study can assist medical providers performing ETI in emergent situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
踏实凡阳发布了新的文献求助10
1秒前
希望天下0贩的0应助CQ采纳,获得10
2秒前
糊糊应助Alisa采纳,获得10
2秒前
Lekai发布了新的文献求助10
3秒前
禾苗发布了新的文献求助10
5秒前
沉静的时光完成签到 ,获得积分10
6秒前
6秒前
8秒前
小刘完成签到,获得积分10
8秒前
grumpysquirel发布了新的文献求助30
8秒前
几两发布了新的文献求助10
8秒前
gez关闭了gez文献求助
8秒前
今后应助西瓜采纳,获得10
8秒前
11秒前
酷波er应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
yznfly应助科研通管家采纳,获得30
12秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
yznfly应助科研通管家采纳,获得30
13秒前
yznfly应助科研通管家采纳,获得30
13秒前
Ava应助科研通管家采纳,获得10
13秒前
钢铁科研应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
13秒前
yznfly应助科研通管家采纳,获得30
13秒前
13秒前
13秒前
13秒前
领导范儿应助彩色映雁采纳,获得10
14秒前
仙林AK47完成签到,获得积分10
14秒前
15秒前
xiaowen完成签到,获得积分10
15秒前
小猴不爱吃水果完成签到,获得积分20
17秒前
17秒前
熊熊发布了新的文献求助10
18秒前
18秒前
Lekai完成签到,获得积分10
19秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959759
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127457
捐赠科研通 3237969
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803019