A cellular senescence-related genes model allows for prognosis and treatment stratification of cervical cancer: a bioinformatics analysis and external verification

列线图 接收机工作特性 Lasso(编程语言) 肿瘤科 单变量 医学 内科学 一致性 曲线下面积 生存分析 基因签名 多元统计 多元分析 衰老 生物信息学 基因 生物 基因表达 统计 遗传学 计算机科学 万维网 数学
作者
Weiwei Yang,Lijuan An,Yanfei Li,Sumin Qian
出处
期刊:Aging [Impact Journals LLC]
卷期号:15 (18): 9408-9425 被引量:3
标识
DOI:10.18632/aging.204981
摘要

Background: Cervical cancer (CC) is highly lethal and aggressive with an increasing trend of mortality for females. Molecular characterization-based methods hold great promise for improving the diagnostic accuracy and for predicting treatment response. Methods: The mRNAs expression data of CC patients and cellular senescence-related genes were obtained from the Cancer Genome Atlas (TCGA) and CellAge databases, respectively. Differentially expressed genes (DEGs) of senescence related genes between tumor and normal tissues were used for Least absolute shrinkage and selection operator (LASSO) regression to construct a prognostic model. Univariate and LASSO regression analyses were applied to establish a predictive nomogram. The performance of the nomogram were evaluated by Kaplan-Meier curve, receiver operating characteristic (ROC), Harrell's concordance index (C-index), and calibration curve. GSE44001 and GSE52903 were used for external validation. Results: We established a cellular senescence-related genes-based stratified model, and a multivariable-based nomogram, which could accurately predict the prognosis of CC patients in the TCGA database. The Kaplan–Meier curve indicated that patients in the low-risk group had considerably better overall survival (OS, P =2.021e-05). The area under the ROC curve (AUC) of this model was 0.743 for OS. Multivariate analysis found that the 6-gene risk signature (HR=3.166, 95%CI: 1.660-6.041, P<0.001) was an independent risk factor for CC patients. We then designed an OS-associated nomogram that included the risk signature and clinicopathological factors. The AUC reached 0.860 for predicting 5-year OS. The nomogram showed excellent consistency between the predictions and actual survival observations. Two external GEO validations were corresponding to the gene expression pattern in TCGA. Conclusions: Our results suggested a six-senescence related signature and established a prognostic nomogram that reliably predicted the overall survival for CC. These findings may be beneficial to personalized treatment and medical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韭菜盒子发布了新的文献求助10
1秒前
潘特发布了新的文献求助10
4秒前
乌滴子完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
善学以致用应助韭菜盒子采纳,获得10
6秒前
jiaaniu完成签到 ,获得积分10
8秒前
清脆靳完成签到,获得积分10
9秒前
cp3xzh完成签到,获得积分10
9秒前
tian发布了新的文献求助10
11秒前
tian发布了新的文献求助10
11秒前
明理宛秋完成签到 ,获得积分10
12秒前
S月小小完成签到,获得积分10
16秒前
斯文的慕儿完成签到 ,获得积分10
23秒前
keen完成签到 ,获得积分10
23秒前
韭菜盒子完成签到,获得积分20
24秒前
潘特完成签到,获得积分10
25秒前
小彭友完成签到,获得积分10
36秒前
37秒前
josie完成签到 ,获得积分10
41秒前
llll完成签到 ,获得积分10
41秒前
量子星尘发布了新的文献求助10
41秒前
韭菜发布了新的文献求助10
41秒前
外向的斑马完成签到 ,获得积分10
42秒前
村长热爱美丽完成签到 ,获得积分10
44秒前
尹尹关注了科研通微信公众号
46秒前
呆呆完成签到 ,获得积分10
47秒前
xianyaoz完成签到 ,获得积分0
54秒前
杨远杰完成签到,获得积分10
55秒前
蓝桉完成签到 ,获得积分10
55秒前
JuliaWang完成签到 ,获得积分10
1分钟前
无限的含羞草完成签到,获得积分10
1分钟前
八二力完成签到 ,获得积分10
1分钟前
韭菜发布了新的文献求助10
1分钟前
情怀应助科研通管家采纳,获得30
1分钟前
water应助科研通管家采纳,获得10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
2012csc完成签到 ,获得积分0
1分钟前
风清扬应助韭菜采纳,获得10
1分钟前
WSY完成签到 ,获得积分10
1分钟前
虞无声发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022