A cellular senescence-related genes model allows for prognosis and treatment stratification of cervical cancer: a bioinformatics analysis and external verification

列线图 接收机工作特性 Lasso(编程语言) 肿瘤科 单变量 医学 内科学 一致性 曲线下面积 生存分析 基因签名 多元统计 多元分析 衰老 生物信息学 基因 生物 基因表达 统计 遗传学 计算机科学 万维网 数学
作者
Weiwei Yang,Lijuan An,Yanfei Li,Sumin Qian
出处
期刊:Aging [Impact Journals, LLC]
卷期号:15 (18): 9408-9425 被引量:3
标识
DOI:10.18632/aging.204981
摘要

Background: Cervical cancer (CC) is highly lethal and aggressive with an increasing trend of mortality for females. Molecular characterization-based methods hold great promise for improving the diagnostic accuracy and for predicting treatment response. Methods: The mRNAs expression data of CC patients and cellular senescence-related genes were obtained from the Cancer Genome Atlas (TCGA) and CellAge databases, respectively. Differentially expressed genes (DEGs) of senescence related genes between tumor and normal tissues were used for Least absolute shrinkage and selection operator (LASSO) regression to construct a prognostic model. Univariate and LASSO regression analyses were applied to establish a predictive nomogram. The performance of the nomogram were evaluated by Kaplan-Meier curve, receiver operating characteristic (ROC), Harrell's concordance index (C-index), and calibration curve. GSE44001 and GSE52903 were used for external validation. Results: We established a cellular senescence-related genes-based stratified model, and a multivariable-based nomogram, which could accurately predict the prognosis of CC patients in the TCGA database. The Kaplan–Meier curve indicated that patients in the low-risk group had considerably better overall survival (OS, P =2.021e-05). The area under the ROC curve (AUC) of this model was 0.743 for OS. Multivariate analysis found that the 6-gene risk signature (HR=3.166, 95%CI: 1.660-6.041, P<0.001) was an independent risk factor for CC patients. We then designed an OS-associated nomogram that included the risk signature and clinicopathological factors. The AUC reached 0.860 for predicting 5-year OS. The nomogram showed excellent consistency between the predictions and actual survival observations. Two external GEO validations were corresponding to the gene expression pattern in TCGA. Conclusions: Our results suggested a six-senescence related signature and established a prognostic nomogram that reliably predicted the overall survival for CC. These findings may be beneficial to personalized treatment and medical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
南辞完成签到 ,获得积分20
2秒前
大大发布了新的文献求助30
2秒前
lucky完成签到,获得积分10
2秒前
2秒前
Sunny完成签到,获得积分10
3秒前
5秒前
5秒前
科目三应助一百度黑采纳,获得10
5秒前
5秒前
椰椰完成签到,获得积分10
6秒前
沉默襄发布了新的文献求助10
6秒前
Xiaopan完成签到 ,获得积分10
8秒前
开朗紫完成签到,获得积分10
8秒前
迪迦王完成签到,获得积分10
8秒前
大模型应助edtaa采纳,获得10
10秒前
unique发布了新的文献求助10
10秒前
10秒前
10秒前
随随发布了新的文献求助10
11秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
buqi发布了新的文献求助10
15秒前
FFFFFF发布了新的文献求助10
15秒前
一百度黑完成签到,获得积分10
16秒前
kdjc完成签到,获得积分10
17秒前
HF发布了新的文献求助10
17秒前
普鲁斯特完成签到,获得积分10
19秒前
赵十一完成签到,获得积分10
20秒前
今后应助我真的不是robot采纳,获得10
21秒前
自觉的绮烟完成签到,获得积分10
21秒前
21秒前
11发布了新的文献求助10
21秒前
垃圾智造者完成签到,获得积分10
22秒前
23秒前
天气很好我很好关注了科研通微信公众号
23秒前
缥缈凡旋完成签到,获得积分10
23秒前
buqi完成签到,获得积分10
24秒前
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495259
求助须知:如何正确求助?哪些是违规求助? 4592967
关于积分的说明 14439338
捐赠科研通 4525803
什么是DOI,文献DOI怎么找? 2479715
邀请新用户注册赠送积分活动 1464544
关于科研通互助平台的介绍 1437385