A cellular senescence-related genes model allows for prognosis and treatment stratification of cervical cancer: a bioinformatics analysis and external verification

列线图 接收机工作特性 Lasso(编程语言) 肿瘤科 单变量 医学 内科学 一致性 曲线下面积 生存分析 基因签名 多元统计 多元分析 衰老 生物信息学 基因 生物 基因表达 统计 遗传学 计算机科学 万维网 数学
作者
Weiwei Yang,Lijuan An,Yanfei Li,Sumin Qian
出处
期刊:Aging [Impact Journals LLC]
卷期号:15 (18): 9408-9425 被引量:3
标识
DOI:10.18632/aging.204981
摘要

Background: Cervical cancer (CC) is highly lethal and aggressive with an increasing trend of mortality for females. Molecular characterization-based methods hold great promise for improving the diagnostic accuracy and for predicting treatment response. Methods: The mRNAs expression data of CC patients and cellular senescence-related genes were obtained from the Cancer Genome Atlas (TCGA) and CellAge databases, respectively. Differentially expressed genes (DEGs) of senescence related genes between tumor and normal tissues were used for Least absolute shrinkage and selection operator (LASSO) regression to construct a prognostic model. Univariate and LASSO regression analyses were applied to establish a predictive nomogram. The performance of the nomogram were evaluated by Kaplan-Meier curve, receiver operating characteristic (ROC), Harrell's concordance index (C-index), and calibration curve. GSE44001 and GSE52903 were used for external validation. Results: We established a cellular senescence-related genes-based stratified model, and a multivariable-based nomogram, which could accurately predict the prognosis of CC patients in the TCGA database. The Kaplan–Meier curve indicated that patients in the low-risk group had considerably better overall survival (OS, P =2.021e-05). The area under the ROC curve (AUC) of this model was 0.743 for OS. Multivariate analysis found that the 6-gene risk signature (HR=3.166, 95%CI: 1.660-6.041, P<0.001) was an independent risk factor for CC patients. We then designed an OS-associated nomogram that included the risk signature and clinicopathological factors. The AUC reached 0.860 for predicting 5-year OS. The nomogram showed excellent consistency between the predictions and actual survival observations. Two external GEO validations were corresponding to the gene expression pattern in TCGA. Conclusions: Our results suggested a six-senescence related signature and established a prognostic nomogram that reliably predicted the overall survival for CC. These findings may be beneficial to personalized treatment and medical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐非笑完成签到,获得积分10
刚刚
在水一方应助管琪娴采纳,获得10
刚刚
1秒前
RYK发布了新的文献求助10
1秒前
233发布了新的文献求助10
2秒前
Unstoppable完成签到,获得积分10
2秒前
江映雨关注了科研通微信公众号
2秒前
An关注了科研通微信公众号
2秒前
凝雁完成签到,获得积分10
3秒前
绝不熬夜到2点完成签到,获得积分10
3秒前
wxp5294完成签到,获得积分10
3秒前
4秒前
Joanna完成签到,获得积分10
4秒前
ShiRz完成签到,获得积分10
4秒前
闪闪绮露完成签到,获得积分10
4秒前
七七完成签到,获得积分10
4秒前
LLXY完成签到,获得积分10
4秒前
4秒前
可可托海完成签到 ,获得积分10
4秒前
雨雨青青发布了新的文献求助10
5秒前
极品女杀手应助fzzf采纳,获得10
5秒前
桃桃甜筒发布了新的文献求助10
5秒前
5秒前
wangwangwang完成签到,获得积分10
6秒前
De.完成签到 ,获得积分10
6秒前
无花果应助芋泥蛋糕采纳,获得10
6秒前
李嘉伟完成签到,获得积分10
6秒前
chrisio完成签到,获得积分10
6秒前
6秒前
hhr完成签到 ,获得积分10
7秒前
Yzhe完成签到,获得积分10
7秒前
7秒前
abc完成签到,获得积分10
7秒前
鉨汏闫完成签到,获得积分10
7秒前
若安在完成签到,获得积分10
7秒前
Da-ming完成签到,获得积分10
7秒前
7秒前
研友_VZG7GZ应助杨凤霞采纳,获得10
8秒前
柳叶完成签到,获得积分10
8秒前
英姑应助香蕉梨愁采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5175950
求助须知:如何正确求助?哪些是违规求助? 4364946
关于积分的说明 13589557
捐赠科研通 4214271
什么是DOI,文献DOI怎么找? 2311500
邀请新用户注册赠送积分活动 1310396
关于科研通互助平台的介绍 1258462