A cellular senescence-related genes model allows for prognosis and treatment stratification of cervical cancer: a bioinformatics analysis and external verification

列线图 接收机工作特性 Lasso(编程语言) 肿瘤科 单变量 医学 内科学 一致性 曲线下面积 生存分析 基因签名 多元统计 多元分析 衰老 生物信息学 基因 生物 基因表达 统计 遗传学 计算机科学 万维网 数学
作者
Weiwei Yang,Lijuan An,Yanfei Li,Sumin Qian
出处
期刊:Aging [Impact Journals, LLC]
卷期号:15 (18): 9408-9425 被引量:3
标识
DOI:10.18632/aging.204981
摘要

Background: Cervical cancer (CC) is highly lethal and aggressive with an increasing trend of mortality for females. Molecular characterization-based methods hold great promise for improving the diagnostic accuracy and for predicting treatment response. Methods: The mRNAs expression data of CC patients and cellular senescence-related genes were obtained from the Cancer Genome Atlas (TCGA) and CellAge databases, respectively. Differentially expressed genes (DEGs) of senescence related genes between tumor and normal tissues were used for Least absolute shrinkage and selection operator (LASSO) regression to construct a prognostic model. Univariate and LASSO regression analyses were applied to establish a predictive nomogram. The performance of the nomogram were evaluated by Kaplan-Meier curve, receiver operating characteristic (ROC), Harrell's concordance index (C-index), and calibration curve. GSE44001 and GSE52903 were used for external validation. Results: We established a cellular senescence-related genes-based stratified model, and a multivariable-based nomogram, which could accurately predict the prognosis of CC patients in the TCGA database. The Kaplan–Meier curve indicated that patients in the low-risk group had considerably better overall survival (OS, P =2.021e-05). The area under the ROC curve (AUC) of this model was 0.743 for OS. Multivariate analysis found that the 6-gene risk signature (HR=3.166, 95%CI: 1.660-6.041, P<0.001) was an independent risk factor for CC patients. We then designed an OS-associated nomogram that included the risk signature and clinicopathological factors. The AUC reached 0.860 for predicting 5-year OS. The nomogram showed excellent consistency between the predictions and actual survival observations. Two external GEO validations were corresponding to the gene expression pattern in TCGA. Conclusions: Our results suggested a six-senescence related signature and established a prognostic nomogram that reliably predicted the overall survival for CC. These findings may be beneficial to personalized treatment and medical decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhaoty发布了新的文献求助10
1秒前
1秒前
1秒前
过时的远侵完成签到,获得积分10
1秒前
酷波er应助李animal采纳,获得10
1秒前
LJJZZX发布了新的文献求助10
2秒前
Ang完成签到,获得积分10
2秒前
阿语发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
小马甲应助ohh采纳,获得10
3秒前
拉拉啊了发布了新的文献求助10
4秒前
科研通AI6应助syx采纳,获得10
4秒前
小二郎应助挽晨采纳,获得10
4秒前
烟花应助挽晨采纳,获得10
4秒前
mango524发布了新的文献求助10
4秒前
星辰大海应助挽晨采纳,获得10
4秒前
Surge发布了新的文献求助10
4秒前
张佳铭发布了新的文献求助10
4秒前
科目三应助一只兔子采纳,获得10
4秒前
圣晟胜完成签到,获得积分10
5秒前
hh哈哈完成签到,获得积分20
5秒前
xt完成签到,获得积分20
5秒前
5秒前
Aries发布了新的文献求助30
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
柠檬小鱼发布了新的文献求助10
7秒前
凡人完成签到,获得积分10
7秒前
devil关注了科研通微信公众号
7秒前
Lz完成签到 ,获得积分10
7秒前
ellyalex发布了新的文献求助10
8秒前
8秒前
科研通AI6应助拉拉啊了采纳,获得10
9秒前
可爱的函函应助冯尔蓝采纳,获得10
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588003
求助须知:如何正确求助?哪些是违规求助? 4671093
关于积分的说明 14785596
捐赠科研通 4624167
什么是DOI,文献DOI怎么找? 2531527
邀请新用户注册赠送积分活动 1500191
关于科研通互助平台的介绍 1468200