A cellular senescence-related genes model allows for prognosis and treatment stratification of cervical cancer: a bioinformatics analysis and external verification

列线图 接收机工作特性 Lasso(编程语言) 肿瘤科 单变量 医学 内科学 一致性 曲线下面积 生存分析 基因签名 多元统计 多元分析 衰老 生物信息学 基因 生物 基因表达 统计 遗传学 计算机科学 万维网 数学
作者
Weiwei Yang,Lijuan An,Yanfei Li,Sumin Qian
出处
期刊:Aging [Impact Journals LLC]
卷期号:15 (18): 9408-9425 被引量:3
标识
DOI:10.18632/aging.204981
摘要

Background: Cervical cancer (CC) is highly lethal and aggressive with an increasing trend of mortality for females. Molecular characterization-based methods hold great promise for improving the diagnostic accuracy and for predicting treatment response. Methods: The mRNAs expression data of CC patients and cellular senescence-related genes were obtained from the Cancer Genome Atlas (TCGA) and CellAge databases, respectively. Differentially expressed genes (DEGs) of senescence related genes between tumor and normal tissues were used for Least absolute shrinkage and selection operator (LASSO) regression to construct a prognostic model. Univariate and LASSO regression analyses were applied to establish a predictive nomogram. The performance of the nomogram were evaluated by Kaplan-Meier curve, receiver operating characteristic (ROC), Harrell's concordance index (C-index), and calibration curve. GSE44001 and GSE52903 were used for external validation. Results: We established a cellular senescence-related genes-based stratified model, and a multivariable-based nomogram, which could accurately predict the prognosis of CC patients in the TCGA database. The Kaplan–Meier curve indicated that patients in the low-risk group had considerably better overall survival (OS, P =2.021e-05). The area under the ROC curve (AUC) of this model was 0.743 for OS. Multivariate analysis found that the 6-gene risk signature (HR=3.166, 95%CI: 1.660-6.041, P<0.001) was an independent risk factor for CC patients. We then designed an OS-associated nomogram that included the risk signature and clinicopathological factors. The AUC reached 0.860 for predicting 5-year OS. The nomogram showed excellent consistency between the predictions and actual survival observations. Two external GEO validations were corresponding to the gene expression pattern in TCGA. Conclusions: Our results suggested a six-senescence related signature and established a prognostic nomogram that reliably predicted the overall survival for CC. These findings may be beneficial to personalized treatment and medical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Juvenilesy发布了新的文献求助30
刚刚
拂晓发布了新的文献求助10
刚刚
王厚文发布了新的文献求助10
刚刚
1秒前
FashionBoy应助momo采纳,获得10
1秒前
ddd完成签到,获得积分10
1秒前
顺利芸发布了新的文献求助10
2秒前
慕青应助lalla采纳,获得10
3秒前
留胡子的沛蓝完成签到 ,获得积分20
3秒前
搜集达人应助小羊肖恩采纳,获得10
4秒前
qs发布了新的文献求助10
4秒前
micaixing2006发布了新的文献求助10
4秒前
4秒前
思源应助xiaoyu采纳,获得10
5秒前
777777发布了新的文献求助10
6秒前
xdx发布了新的文献求助10
6秒前
温暖寻琴完成签到,获得积分10
8秒前
扶光完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
liu完成签到,获得积分10
9秒前
10秒前
Criminology34应助已秃采纳,获得10
10秒前
10秒前
mjc完成签到,获得积分10
11秒前
杨文杰发布了新的文献求助50
12秒前
Happy发布了新的文献求助10
13秒前
lalla完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助50
13秒前
塔木发布了新的文献求助10
15秒前
15秒前
Lucas应助Yipeng98采纳,获得10
15秒前
王厚文完成签到,获得积分20
16秒前
Lorain完成签到,获得积分10
16秒前
浮游应助顺利芸采纳,获得10
17秒前
17秒前
研友_VZG7GZ应助已秃采纳,获得30
18秒前
申震关注了科研通微信公众号
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5005617
求助须知:如何正确求助?哪些是违规求助? 4249178
关于积分的说明 13240238
捐赠科研通 4048859
什么是DOI,文献DOI怎么找? 2215065
邀请新用户注册赠送积分活动 1225027
关于科研通互助平台的介绍 1145470