A cellular senescence-related genes model allows for prognosis and treatment stratification of cervical cancer: a bioinformatics analysis and external verification

列线图 接收机工作特性 Lasso(编程语言) 肿瘤科 单变量 医学 内科学 一致性 曲线下面积 生存分析 基因签名 多元统计 多元分析 衰老 生物信息学 基因 生物 基因表达 统计 遗传学 计算机科学 万维网 数学
作者
Weiwei Yang,Lijuan An,Yanfei Li,Sumin Qian
出处
期刊:Aging [Impact Journals, LLC]
卷期号:15 (18): 9408-9425 被引量:3
标识
DOI:10.18632/aging.204981
摘要

Background: Cervical cancer (CC) is highly lethal and aggressive with an increasing trend of mortality for females. Molecular characterization-based methods hold great promise for improving the diagnostic accuracy and for predicting treatment response. Methods: The mRNAs expression data of CC patients and cellular senescence-related genes were obtained from the Cancer Genome Atlas (TCGA) and CellAge databases, respectively. Differentially expressed genes (DEGs) of senescence related genes between tumor and normal tissues were used for Least absolute shrinkage and selection operator (LASSO) regression to construct a prognostic model. Univariate and LASSO regression analyses were applied to establish a predictive nomogram. The performance of the nomogram were evaluated by Kaplan-Meier curve, receiver operating characteristic (ROC), Harrell's concordance index (C-index), and calibration curve. GSE44001 and GSE52903 were used for external validation. Results: We established a cellular senescence-related genes-based stratified model, and a multivariable-based nomogram, which could accurately predict the prognosis of CC patients in the TCGA database. The Kaplan–Meier curve indicated that patients in the low-risk group had considerably better overall survival (OS, P =2.021e-05). The area under the ROC curve (AUC) of this model was 0.743 for OS. Multivariate analysis found that the 6-gene risk signature (HR=3.166, 95%CI: 1.660-6.041, P<0.001) was an independent risk factor for CC patients. We then designed an OS-associated nomogram that included the risk signature and clinicopathological factors. The AUC reached 0.860 for predicting 5-year OS. The nomogram showed excellent consistency between the predictions and actual survival observations. Two external GEO validations were corresponding to the gene expression pattern in TCGA. Conclusions: Our results suggested a six-senescence related signature and established a prognostic nomogram that reliably predicted the overall survival for CC. These findings may be beneficial to personalized treatment and medical decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pgojpogk发布了新的文献求助30
刚刚
所所应助小磊采纳,获得10
刚刚
1秒前
SGY完成签到,获得积分20
1秒前
高尚发布了新的文献求助10
1秒前
研究僧完成签到,获得积分10
2秒前
慕青应助无辜丹翠采纳,获得10
3秒前
3秒前
落英芬芳发布了新的文献求助10
3秒前
大个应助aken采纳,获得10
3秒前
徐嗣桐完成签到,获得积分10
3秒前
贪玩飞珍发布了新的文献求助10
3秒前
4秒前
4秒前
1111发布了新的文献求助10
4秒前
李嘉图发布了新的文献求助10
4秒前
李ny发布了新的文献求助30
4秒前
SS2D发布了新的文献求助10
4秒前
赘婿应助翁遥采纳,获得20
5秒前
MYhang完成签到,获得积分10
5秒前
于金正发布了新的文献求助10
5秒前
5秒前
李健应助Rjy采纳,获得10
6秒前
6秒前
6秒前
小二郎应助LQ采纳,获得30
7秒前
JerryZ发布了新的文献求助30
7秒前
紧张的寄凡完成签到,获得积分10
7秒前
8秒前
小猪完成签到,获得积分10
8秒前
HHHONG发布了新的文献求助30
8秒前
Myx完成签到,获得积分10
8秒前
zhaoshanmei完成签到,获得积分10
8秒前
mx发布了新的文献求助10
9秒前
202211010668发布了新的文献求助10
9秒前
忧郁的白风完成签到,获得积分10
10秒前
10秒前
研友_85rWQL发布了新的文献求助30
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505994
求助须知:如何正确求助?哪些是违规求助? 4601482
关于积分的说明 14476730
捐赠科研通 4535445
什么是DOI,文献DOI怎么找? 2485408
邀请新用户注册赠送积分活动 1468357
关于科研通互助平台的介绍 1440869