A cellular senescence-related genes model allows for prognosis and treatment stratification of cervical cancer: a bioinformatics analysis and external verification

列线图 接收机工作特性 Lasso(编程语言) 肿瘤科 单变量 医学 内科学 一致性 曲线下面积 生存分析 基因签名 多元统计 多元分析 衰老 生物信息学 基因 生物 基因表达 统计 遗传学 计算机科学 万维网 数学
作者
Weiwei Yang,Lijuan An,Yanfei Li,Sumin Qian
出处
期刊:Aging [Impact Journals, LLC]
卷期号:15 (18): 9408-9425 被引量:3
标识
DOI:10.18632/aging.204981
摘要

Background: Cervical cancer (CC) is highly lethal and aggressive with an increasing trend of mortality for females. Molecular characterization-based methods hold great promise for improving the diagnostic accuracy and for predicting treatment response. Methods: The mRNAs expression data of CC patients and cellular senescence-related genes were obtained from the Cancer Genome Atlas (TCGA) and CellAge databases, respectively. Differentially expressed genes (DEGs) of senescence related genes between tumor and normal tissues were used for Least absolute shrinkage and selection operator (LASSO) regression to construct a prognostic model. Univariate and LASSO regression analyses were applied to establish a predictive nomogram. The performance of the nomogram were evaluated by Kaplan-Meier curve, receiver operating characteristic (ROC), Harrell's concordance index (C-index), and calibration curve. GSE44001 and GSE52903 were used for external validation. Results: We established a cellular senescence-related genes-based stratified model, and a multivariable-based nomogram, which could accurately predict the prognosis of CC patients in the TCGA database. The Kaplan–Meier curve indicated that patients in the low-risk group had considerably better overall survival (OS, P =2.021e-05). The area under the ROC curve (AUC) of this model was 0.743 for OS. Multivariate analysis found that the 6-gene risk signature (HR=3.166, 95%CI: 1.660-6.041, P<0.001) was an independent risk factor for CC patients. We then designed an OS-associated nomogram that included the risk signature and clinicopathological factors. The AUC reached 0.860 for predicting 5-year OS. The nomogram showed excellent consistency between the predictions and actual survival observations. Two external GEO validations were corresponding to the gene expression pattern in TCGA. Conclusions: Our results suggested a six-senescence related signature and established a prognostic nomogram that reliably predicted the overall survival for CC. These findings may be beneficial to personalized treatment and medical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赖烊烊完成签到 ,获得积分10
刚刚
dog发布了新的文献求助10
刚刚
wy发布了新的文献求助10
1秒前
研友_VZG7GZ应助闪闪的熠彤采纳,获得10
2秒前
669936lyh发布了新的文献求助10
3秒前
3秒前
田様应助小乐采纳,获得10
4秒前
搜集达人应助威武寒珊采纳,获得10
5秒前
6秒前
7秒前
负负得正发布了新的文献求助20
7秒前
来一斤这种鱼完成签到 ,获得积分10
7秒前
669936lyh完成签到,获得积分20
9秒前
奋斗不止发布了新的文献求助30
10秒前
10秒前
赖梦婷完成签到,获得积分20
12秒前
13秒前
Lny应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
小杭76应助科研通管家采纳,获得10
13秒前
xzy998应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
13秒前
14秒前
14秒前
14秒前
Xin5599发布了新的文献求助10
14秒前
饱满的棒棒糖完成签到 ,获得积分10
15秒前
15秒前
小于完成签到,获得积分10
17秒前
笔墨留香发布了新的文献求助10
17秒前
18秒前
18秒前
tan发布了新的文献求助10
19秒前
大力沛萍发布了新的文献求助10
20秒前
杏子发布了新的文献求助10
21秒前
tang发布了新的文献求助10
21秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443159
求助须知:如何正确求助?哪些是违规求助? 4553068
关于积分的说明 14240935
捐赠科研通 4474702
什么是DOI,文献DOI怎么找? 2452098
邀请新用户注册赠送积分活动 1443060
关于科研通互助平台的介绍 1418705