A cellular senescence-related genes model allows for prognosis and treatment stratification of cervical cancer: a bioinformatics analysis and external verification

列线图 接收机工作特性 Lasso(编程语言) 肿瘤科 单变量 医学 内科学 一致性 曲线下面积 生存分析 基因签名 多元统计 多元分析 衰老 生物信息学 基因 生物 基因表达 统计 遗传学 计算机科学 万维网 数学
作者
Weiwei Yang,Lijuan An,Yanfei Li,Sumin Qian
出处
期刊:Aging [Impact Journals LLC]
卷期号:15 (18): 9408-9425 被引量:3
标识
DOI:10.18632/aging.204981
摘要

Background: Cervical cancer (CC) is highly lethal and aggressive with an increasing trend of mortality for females. Molecular characterization-based methods hold great promise for improving the diagnostic accuracy and for predicting treatment response. Methods: The mRNAs expression data of CC patients and cellular senescence-related genes were obtained from the Cancer Genome Atlas (TCGA) and CellAge databases, respectively. Differentially expressed genes (DEGs) of senescence related genes between tumor and normal tissues were used for Least absolute shrinkage and selection operator (LASSO) regression to construct a prognostic model. Univariate and LASSO regression analyses were applied to establish a predictive nomogram. The performance of the nomogram were evaluated by Kaplan-Meier curve, receiver operating characteristic (ROC), Harrell's concordance index (C-index), and calibration curve. GSE44001 and GSE52903 were used for external validation. Results: We established a cellular senescence-related genes-based stratified model, and a multivariable-based nomogram, which could accurately predict the prognosis of CC patients in the TCGA database. The Kaplan–Meier curve indicated that patients in the low-risk group had considerably better overall survival (OS, P =2.021e-05). The area under the ROC curve (AUC) of this model was 0.743 for OS. Multivariate analysis found that the 6-gene risk signature (HR=3.166, 95%CI: 1.660-6.041, P<0.001) was an independent risk factor for CC patients. We then designed an OS-associated nomogram that included the risk signature and clinicopathological factors. The AUC reached 0.860 for predicting 5-year OS. The nomogram showed excellent consistency between the predictions and actual survival observations. Two external GEO validations were corresponding to the gene expression pattern in TCGA. Conclusions: Our results suggested a six-senescence related signature and established a prognostic nomogram that reliably predicted the overall survival for CC. These findings may be beneficial to personalized treatment and medical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
easton发布了新的文献求助10
刚刚
1秒前
hjc完成签到,获得积分10
1秒前
Carlito完成签到,获得积分10
1秒前
汪汪脆冰冰完成签到,获得积分10
1秒前
枫也完成签到,获得积分10
2秒前
bb发布了新的文献求助10
2秒前
Ava应助扶苏采纳,获得10
2秒前
搜集达人应助李大柱采纳,获得10
2秒前
PhD-SCAU完成签到,获得积分10
3秒前
冰糖胡芦完成签到,获得积分10
4秒前
田乐天完成签到 ,获得积分10
4秒前
杨仔发布了新的文献求助10
4秒前
李大侠发布了新的文献求助10
5秒前
杨杨杨发布了新的文献求助10
5秒前
5秒前
凌晴发布了新的文献求助30
5秒前
Cindy发布了新的文献求助10
6秒前
黑大帅完成签到,获得积分10
7秒前
7秒前
7秒前
0411345完成签到,获得积分10
8秒前
8秒前
8秒前
刘齐完成签到,获得积分10
8秒前
Roach完成签到,获得积分10
8秒前
Ava应助lll采纳,获得10
8秒前
贰级完成签到,获得积分10
9秒前
9秒前
俞绯发布了新的文献求助10
9秒前
再美完成签到,获得积分10
9秒前
Aurorademon完成签到,获得积分10
10秒前
阿飞完成签到,获得积分10
10秒前
星期八完成签到,获得积分10
10秒前
懒羊羊发布了新的文献求助10
11秒前
zixian完成签到,获得积分10
11秒前
11秒前
兴奋的蜡烛完成签到,获得积分10
11秒前
LYB1a吕完成签到,获得积分10
12秒前
科研狗完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968934
求助须知:如何正确求助?哪些是违规求助? 3513835
关于积分的说明 11170238
捐赠科研通 3249167
什么是DOI,文献DOI怎么找? 1794650
邀请新用户注册赠送积分活动 875278
科研通“疑难数据库(出版商)”最低求助积分说明 804755