控制理论(社会学)
强化学习
计算机科学
非线性系统
执行机构
跟踪误差
观察员(物理)
李雅普诺夫函数
容错
控制工程
工程类
控制(管理)
人工智能
量子力学
分布式计算
物理
标识
DOI:10.1016/j.ast.2023.108631
摘要
This paper presents a novel fixed-time adaptive Fault Tolerant Control (FTC) framework for MIMO nonlinear Euler-Lagrange systems using sliding mode-based strategy, reinforcement learning (RL) and fixed-time disturbance observer. The primary objective is to enhance system reliability in the presence of actuator faults, uncertainties and disturbances. The proposed RL algorithm incorporates an actor-critic neural network (NN), where the actor NN estimates the uncertainty and the critic NN evaluates the performance cost function. Additionally, a fixed-time adaptive observer is designed to estimate the lumped term of faults and disturbances. To achieve high precision trajectory tracking within a fixed-time interval, a nonsingular fast terminal sliding mode scheme is designed. This scheme ensures fixed-time convergence of the tracking error and facilitates disturbance attenuation and fault mitigation, which are key features of the proposed fixed-time secure control strategy. Furthermore, the closed-loop system's fixed-time stability is analyzed using Lyapunov theory. Experimental results demonstrate the effectiveness of the proposed FTC framework in mitigating the adverse effects of faults, uncertainties and disturbances, thereby enhancing system performance and reliability.
科研通智能强力驱动
Strongly Powered by AbleSci AI