DeepICSH: a complex deep learning framework for identifying cell-specific silencers and their strength from the human genome

鉴定(生物学) 计算机科学 卷积神经网络 计算生物学 消音器 深度学习 基因组 源代码 编码 生物 人工智能 遗传学 基因 机械工程 植物 工程类 入口 操作系统
作者
Tianjiao Zhang,Liangyu Li,Hailong Sun,Di Xu,Guohua Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5) 被引量:1
标识
DOI:10.1093/bib/bbad316
摘要

Silencers are noncoding DNA sequence fragments located on the genome that suppress gene expression. The variation of silencers in specific cells is closely related to gene expression and cancer development. Computational approaches that exclusively rely on DNA sequence information for silencer identification fail to account for the cell specificity of silencers, resulting in diminished accuracy. Despite the discovery of several transcription factors and epigenetic modifications associated with silencers on the genome, there is still no definitive biological signal or combination thereof to fully characterize silencers, posing challenges in selecting suitable biological signals for their identification. Therefore, we propose a sophisticated deep learning framework called DeepICSH, which is based on multiple biological data sources. Specifically, DeepICSH leverages a deep convolutional neural network to automatically capture biologically relevant signal combinations strongly associated with silencers, originating from a diverse array of biological signals. Furthermore, the utilization of attention mechanisms facilitates the scoring and visualization of these signal combinations, whereas the employment of skip connections facilitates the fusion of multilevel sequence features and signal combinations, thereby empowering the accurate identification of silencers within specific cells. Extensive experiments on HepG2 and K562 cell line data sets demonstrate that DeepICSH outperforms state-of-the-art methods in silencer identification. Notably, we introduce for the first time a deep learning framework based on multi-omics data for classifying strong and weak silencers, achieving favorable performance. In conclusion, DeepICSH shows great promise for advancing the study and analysis of silencers in complex diseases. The source code is available at https://github.com/lyli1013/DeepICSH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
maox1aoxin应助科研通管家采纳,获得30
刚刚
无花果应助科研通管家采纳,获得10
1秒前
11完成签到,获得积分10
1秒前
1秒前
1秒前
时尚的书易给时尚的书易的求助进行了留言
1秒前
南北完成签到,获得积分10
2秒前
2秒前
2秒前
MADKAI发布了新的文献求助20
2秒前
xiaoli完成签到,获得积分10
3秒前
清浅完成签到,获得积分10
3秒前
赘婿应助深海soda采纳,获得10
3秒前
WJM完成签到,获得积分10
3秒前
小星星完成签到,获得积分10
3秒前
啵乐乐发布了新的文献求助10
3秒前
爆米花应助瘦瘦白昼采纳,获得10
3秒前
wintercyan发布了新的文献求助20
3秒前
大雁高飞出不胜寒完成签到,获得积分10
4秒前
PSCs发布了新的文献求助10
4秒前
QWJ完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
zxy完成签到,获得积分10
6秒前
sober完成签到,获得积分10
6秒前
6秒前
mmknnk完成签到,获得积分20
6秒前
cc2064完成签到 ,获得积分10
6秒前
调皮冰旋发布了新的文献求助10
7秒前
西哈哈完成签到,获得积分20
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678