DeepICSH: a complex deep learning framework for identifying cell-specific silencers and their strength from the human genome

鉴定(生物学) 计算机科学 卷积神经网络 计算生物学 消音器 深度学习 基因组 源代码 编码 生物 人工智能 遗传学 基因 机械工程 植物 工程类 入口 操作系统
作者
Tianjiao Zhang,Liangyu Li,Hailong Sun,Di Xu,Guohua Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5) 被引量:1
标识
DOI:10.1093/bib/bbad316
摘要

Silencers are noncoding DNA sequence fragments located on the genome that suppress gene expression. The variation of silencers in specific cells is closely related to gene expression and cancer development. Computational approaches that exclusively rely on DNA sequence information for silencer identification fail to account for the cell specificity of silencers, resulting in diminished accuracy. Despite the discovery of several transcription factors and epigenetic modifications associated with silencers on the genome, there is still no definitive biological signal or combination thereof to fully characterize silencers, posing challenges in selecting suitable biological signals for their identification. Therefore, we propose a sophisticated deep learning framework called DeepICSH, which is based on multiple biological data sources. Specifically, DeepICSH leverages a deep convolutional neural network to automatically capture biologically relevant signal combinations strongly associated with silencers, originating from a diverse array of biological signals. Furthermore, the utilization of attention mechanisms facilitates the scoring and visualization of these signal combinations, whereas the employment of skip connections facilitates the fusion of multilevel sequence features and signal combinations, thereby empowering the accurate identification of silencers within specific cells. Extensive experiments on HepG2 and K562 cell line data sets demonstrate that DeepICSH outperforms state-of-the-art methods in silencer identification. Notably, we introduce for the first time a deep learning framework based on multi-omics data for classifying strong and weak silencers, achieving favorable performance. In conclusion, DeepICSH shows great promise for advancing the study and analysis of silencers in complex diseases. The source code is available at https://github.com/lyli1013/DeepICSH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15759869988发布了新的文献求助30
1秒前
1秒前
schon完成签到 ,获得积分10
1秒前
电催化托完成签到,获得积分10
2秒前
特空机二号泽塔完成签到,获得积分20
2秒前
糖糖完成签到,获得积分10
3秒前
领导范儿应助多宝鱼采纳,获得10
4秒前
5秒前
越幸运完成签到 ,获得积分10
5秒前
5秒前
5秒前
哭泣的凡波完成签到,获得积分10
5秒前
小大夫发布了新的文献求助10
6秒前
香蕉觅云应助bofu采纳,获得10
6秒前
VaVa应助烂漫的蜡烛采纳,获得10
7秒前
欣慰的乐安完成签到,获得积分10
7秒前
JamesPei应助jbhb采纳,获得10
7秒前
自觉的时光完成签到,获得积分10
8秒前
Pony完成签到,获得积分10
9秒前
无花果应助jason采纳,获得10
9秒前
9秒前
小离心机完成签到,获得积分10
9秒前
情怀应助empty采纳,获得10
10秒前
彭于彦祖应助自然浩阑采纳,获得30
10秒前
10秒前
10秒前
11秒前
吉吉吉发布了新的文献求助10
11秒前
12秒前
买了束花完成签到,获得积分10
12秒前
12秒前
可爱的函函应助啦啦啦采纳,获得10
12秒前
gao应助soso采纳,获得10
13秒前
13秒前
14秒前
顾矜应助Qiaoclin采纳,获得10
15秒前
serendipity完成签到 ,获得积分10
15秒前
Shine完成签到 ,获得积分10
15秒前
买了束花发布了新的文献求助10
15秒前
共享精神应助bofu采纳,获得10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303771
求助须知:如何正确求助?哪些是违规求助? 2937960
关于积分的说明 8485658
捐赠科研通 2611928
什么是DOI,文献DOI怎么找? 1426406
科研通“疑难数据库(出版商)”最低求助积分说明 662619
邀请新用户注册赠送积分活动 647170