DeepICSH: a complex deep learning framework for identifying cell-specific silencers and their strength from the human genome

鉴定(生物学) 计算机科学 卷积神经网络 计算生物学 消音器 深度学习 基因组 源代码 编码 生物 人工智能 遗传学 基因 机械工程 植物 工程类 入口 操作系统
作者
Tianjiao Zhang,Liangyu Li,Hailong Sun,Di Xu,Guohua Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5) 被引量:1
标识
DOI:10.1093/bib/bbad316
摘要

Silencers are noncoding DNA sequence fragments located on the genome that suppress gene expression. The variation of silencers in specific cells is closely related to gene expression and cancer development. Computational approaches that exclusively rely on DNA sequence information for silencer identification fail to account for the cell specificity of silencers, resulting in diminished accuracy. Despite the discovery of several transcription factors and epigenetic modifications associated with silencers on the genome, there is still no definitive biological signal or combination thereof to fully characterize silencers, posing challenges in selecting suitable biological signals for their identification. Therefore, we propose a sophisticated deep learning framework called DeepICSH, which is based on multiple biological data sources. Specifically, DeepICSH leverages a deep convolutional neural network to automatically capture biologically relevant signal combinations strongly associated with silencers, originating from a diverse array of biological signals. Furthermore, the utilization of attention mechanisms facilitates the scoring and visualization of these signal combinations, whereas the employment of skip connections facilitates the fusion of multilevel sequence features and signal combinations, thereby empowering the accurate identification of silencers within specific cells. Extensive experiments on HepG2 and K562 cell line data sets demonstrate that DeepICSH outperforms state-of-the-art methods in silencer identification. Notably, we introduce for the first time a deep learning framework based on multi-omics data for classifying strong and weak silencers, achieving favorable performance. In conclusion, DeepICSH shows great promise for advancing the study and analysis of silencers in complex diseases. The source code is available at https://github.com/lyli1013/DeepICSH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
成就芒果tv完成签到,获得积分10
4秒前
tao发布了新的文献求助10
4秒前
5秒前
obscure发布了新的文献求助10
5秒前
5秒前
微笑的土豆完成签到,获得积分10
5秒前
6秒前
李还乱完成签到,获得积分10
7秒前
smottom应助洪星采纳,获得10
8秒前
9秒前
苏卿应助六月666采纳,获得80
9秒前
你的女孩TT完成签到,获得积分10
9秒前
痛苦啊应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
May应助科研通管家采纳,获得20
10秒前
知许解夏应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
yznfly应助科研通管家采纳,获得200
10秒前
Orange应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得30
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
dingjianqiang发布了新的文献求助10
11秒前
852应助科研通管家采纳,获得10
11秒前
May应助科研通管家采纳,获得20
11秒前
从容盼山应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
传奇3应助凡凡采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
Lane_Crumus应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得30
11秒前
AnJaShua发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403