The cost of forming statistical summary representations across multiple spatial scales

矩形 方向(向量空间) 代表(政治) 模式识别(心理学) 计算机科学 特征(语言学) 人工智能 数学 统计 几何学 语言学 哲学 政治 政治学 法学
作者
Sandarsh Pandey,Kyle R. Cave
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:23 (9): 4965-4965
标识
DOI:10.1167/jov.23.9.4965
摘要

The visual system can extract a statistical summary representation (SSR) of a group of similar objects (Ariely 2001). We can form SSRs across multiple feature dimensions for a group of objects (Chong & Treisman, 2005), across multiple feature dimensions across multiple groups of objects (Emmanouil & Treisman, 2008), and across multiple sensory modalities (Albrecht et al., 2013). The current experiments are the first to study the properties of SSRs across multiple spatial scales. The stimuli consist of three large rectangles constructed by spatially arranging multiple small rectangles. All the small rectangles within a large rectangle have the same orientation. Participants estimate the average orientation of either the large rectangles (global level or low spatial frequency) or the small rectangles (local level or high spatial frequency). In Experiment 1, we use a cueing paradigm to demonstrate the cost in forming statistical summary representations across multiple spatial scales. Many models (Parkes et al. 2001; Baek & Chong, 2019) assume that properties of individual items must be computed before creating an SSR of the group. If so, it is important to show that there is an SSR formation cost in Experiment 1 above and beyond the cost of representing the individual items. In Experiment 2, we address this question with stimuli consisting of a single large rectangle constructed from several small rectangles. Participants estimated the orientation of either the large rectangle or the small rectangles. There was a cost involved in the formation of a single item hierarchical representation. Comparing the results from the two experiments revealed that there is an additional cost in the formation of hierarchical SSRs after the hierarchical single item representations are formed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周老八发布了新的文献求助10
刚刚
研友_X894JZ完成签到 ,获得积分10
1秒前
祁代芙发布了新的文献求助20
1秒前
gmchen发布了新的文献求助10
1秒前
明理的赛凤完成签到,获得积分20
3秒前
4秒前
4秒前
6秒前
周老八完成签到,获得积分10
6秒前
7秒前
AM发布了新的文献求助10
8秒前
氟7给氟7的求助进行了留言
8秒前
出水的芙蓉完成签到,获得积分10
9秒前
luotaoato发布了新的文献求助10
10秒前
臭嘴橘子完成签到,获得积分10
10秒前
10秒前
乐乐应助合适小蘑菇采纳,获得10
12秒前
大大怪发布了新的文献求助10
12秒前
拉长的灵阳完成签到,获得积分10
12秒前
科研渣子发布了新的文献求助10
12秒前
华仔应助明亮的卿采纳,获得10
12秒前
ding应助Evnnnn采纳,获得10
13秒前
大模型应助今天不加班采纳,获得10
14秒前
今后应助Haliwily采纳,获得10
14秒前
稳重的芹菜关注了科研通微信公众号
15秒前
chHe发布了新的文献求助10
16秒前
炙热的振家完成签到,获得积分10
16秒前
你好呀完成签到,获得积分10
16秒前
丘比特应助yyy采纳,获得50
18秒前
共享精神应助lykk采纳,获得50
20秒前
20秒前
Hello应助踏实的访文采纳,获得10
20秒前
君乐宝完成签到,获得积分20
21秒前
tuanheqi应助isonomia采纳,获得50
21秒前
大大怪完成签到,获得积分20
21秒前
华仔应助乐观的初柳采纳,获得10
21秒前
21秒前
你好呀发布了新的文献求助10
22秒前
香蕉觅云应助czz采纳,获得10
22秒前
Dengxiaojiang完成签到,获得积分10
22秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234117
求助须知:如何正确求助?哪些是违规求助? 2880509
关于积分的说明 8215804
捐赠科研通 2548076
什么是DOI,文献DOI怎么找? 1377485
科研通“疑难数据库(出版商)”最低求助积分说明 647924
邀请新用户注册赠送积分活动 623263