Largely enhanced pseudocapacitance by a facile in-situ decoration of MoS2 nanosheets with CoFe2O4 nanoparticles

假电容 材料科学 超级电容器 剥脱关节 电极 纳米颗粒 纳米片 纳米技术 化学工程 电化学 透射电子显微镜 复合数 复合材料 石墨烯 化学 物理化学 工程类
作者
Samira Sharifi,Kourosh Rahimi,Ahmad Yazdani
出处
期刊:Journal of energy storage [Elsevier]
卷期号:72: 108499-108499 被引量:4
标识
DOI:10.1016/j.est.2023.108499
摘要

Using a facile in-situ hydrothermal method, few-layer MoS2 nanosheets were decorated with CoFe2O4 nanoparticles (∼18 nm in size) in the presence of Ni foam. Then the CoFe2O4/MoS2 composite coated on Ni foam was studied as a supercapacitor electrode. Atomic force microscopy (AFM) shows the successful exfoliation of bulk MoS2 powder into few-layer MoS2 nanosheets. X-ray diffraction (XRD) patterns confirm the crystal structure formation of CoFe2O4/MoS2 nanostructures and transmission electron microscopy (TEM) demonstrate their morphologies. The electrochemical energy storage tests were conducted using a three-electrode setup. We found that MoS2 nanosheets considerably enhance the pseudocapacitance properties of CoFe2O4 nanoparticles, especially its specific capacitance from 500 to 1013 F/g, its power density from 125.0 to 166.6 W/kg, and its energy density from 11.1 to 22.5 Wh/kg. More importantly, we found that the incorporation of MoS2 nanosheets enhances the charge-discharge cycling stability of CoFe2O4. We also constructed a two-electrode (asymmetric) setup using the CoFe2O4/MoS2 composite coated on Ni foam as one electrode and activated carbon as the other electrode, and showed it can light up a red LED for several minutes. We also conducted some calculations in the framework of density functional theory to study how the interface of MoS2 and CoFe2O4 would help them toward better charge storage. We found that the built-in electric field developed across the interface can pull electrons from CoFe2O4 toward MoS2 for better charge redistribution, and the incorporation of MoS2 would add some energy states near the Fermi level that can increase the capacitance of CoFe2O4.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
温暖寻雪发布了新的文献求助10
1秒前
wangR完成签到,获得积分10
2秒前
3秒前
5秒前
5秒前
万能图书馆应助李鑫采纳,获得10
5秒前
易烊千玺发布了新的文献求助10
6秒前
丘比特应助常常在努力采纳,获得30
7秒前
Hello应助单纯的荔枝采纳,获得10
7秒前
7秒前
赘婿应助可乐采纳,获得10
9秒前
畅快芝麻发布了新的文献求助10
9秒前
Hello应助今晚打老虎采纳,获得10
9秒前
10秒前
橙月发布了新的文献求助10
10秒前
Owen应助2021采纳,获得10
11秒前
pdc发布了新的文献求助10
12秒前
科研通AI2S应助zz采纳,获得10
13秒前
大大大大大完成签到,获得积分10
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
15秒前
大鱼完成签到,获得积分10
16秒前
小星星发布了新的文献求助10
17秒前
YYX完成签到 ,获得积分10
18秒前
19秒前
NexusExplorer应助二次元喵酱采纳,获得10
20秒前
易烊千玺完成签到,获得积分10
20秒前
23秒前
朴实的面包完成签到 ,获得积分10
23秒前
pdc完成签到,获得积分10
25秒前
单薄的浩阑完成签到 ,获得积分10
25秒前
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316163
求助须知:如何正确求助?哪些是违规求助? 2947769
关于积分的说明 8538487
捐赠科研通 2623875
什么是DOI,文献DOI怎么找? 1435579
科研通“疑难数据库(出版商)”最低求助积分说明 665632
邀请新用户注册赠送积分活动 651457