Integrating Artificial Intelligence and Machine Learning Into Cancer Clinical Trials

人工智能 医学 临床试验 机器学习 生成语法 临床实习 计算机科学 内科学 家庭医学
作者
John Kang,Amit K. Chowdhry,Stephanie L. Pugh,John H. Park
出处
期刊:Seminars in Radiation Oncology [Elsevier]
卷期号:33 (4): 386-394 被引量:5
标识
DOI:10.1016/j.semradonc.2023.06.004
摘要

The practice of oncology requires analyzing and synthesizing abundant data. From the patient's workup to determine eligibility to the therapies received to the post-treatment surveillance, practitioners must constantly juggle, evaluate, and weigh decision-making based on their best understanding of information at hand. These complex, multifactorial decisions have a tremendous opportunity to benefit from data-driven machine learning (ML) methods to drive opportunities in artificial intelligence (AI). Within the past 5 years, we have seen AI move from simply a promising opportunity to being used in prospective trials. Here, we review recent efforts of AI in clinical trials that have moved the needle towards improved prediction of actionable outcomes, such as predicting acute care visits, short term mortality, and pathologic extranodal extension. We then pause and reflect on how these AI models ask a different question than traditional statistics models that readers may be more familiar with; how then should readers conceptualize and interpret AI models that they are not as familiar with. We end with what we believe are promising future opportunities for AI in oncology, with an eye towards allowing the data to inform us through unsupervised learning and generative models, rather than asking AI to perform specific functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
二七完成签到,获得积分10
2秒前
askljfhdoal发布了新的文献求助10
2秒前
海盐气泡水完成签到,获得积分10
2秒前
wsg完成签到,获得积分10
3秒前
菠萝披萨完成签到,获得积分10
4秒前
5秒前
renew发布了新的文献求助50
5秒前
称心嫣娆发布了新的文献求助10
5秒前
zds发布了新的文献求助10
6秒前
zfy完成签到,获得积分10
7秒前
研友_VZG7GZ应助刘师傅采纳,获得10
10秒前
研友_Zl1Da8完成签到,获得积分10
10秒前
11秒前
天天快乐应助小慧儿采纳,获得10
11秒前
12秒前
12秒前
zhang关注了科研通微信公众号
13秒前
13秒前
mark2021完成签到,获得积分10
14秒前
抗体小王发布了新的文献求助10
14秒前
16秒前
zds完成签到,获得积分20
16秒前
长vefvj发布了新的文献求助10
16秒前
CodeCraft应助mm采纳,获得10
16秒前
诗图完成签到 ,获得积分10
17秒前
17秒前
wendy完成签到,获得积分10
17秒前
17秒前
高壳盐完成签到,获得积分10
18秒前
梅啦啦完成签到 ,获得积分10
18秒前
沉淀发布了新的文献求助10
19秒前
momo完成签到,获得积分10
20秒前
20秒前
123456完成签到,获得积分10
21秒前
隐形盼海发布了新的文献求助10
21秒前
22秒前
33发布了新的文献求助10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151673
求助须知:如何正确求助?哪些是违规求助? 2803099
关于积分的说明 7851899
捐赠科研通 2460474
什么是DOI,文献DOI怎么找? 1309813
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760