CopulaGAN Boosted Random Forest based Network Intrusion Detection System for Hospital Network Infrastructure

入侵检测系统 计算机科学 随机森林 超参数 班级(哲学) 数据挖掘 机器学习 网络安全 人工智能 集合(抽象数据类型) 保护 计算机安全 医学 护理部 程序设计语言
作者
Harshini Sivakami,M Nivedhidha,M P Ramkumar,G. S. R. Emil Selvan
标识
DOI:10.1109/icccnt56998.2023.10306951
摘要

The growing dependence on technology in healthcare has resulted in the creation of sophisticated hospital networks that are highly linked and vulnerable to cyber threats. A reliable Network Intrusion Detection System (NIDS) is required to identify and prevent such cyberattacks. The network intrusion detection is vital for safeguarding hospital networks and guaranteeing data security. The CICIDS2017 dataset contains a comprehensive set of network traffic characteristics for assessing network intrusion detection systems. Besides that, class imbalance is a prevalent difficulty in intrusion detection and it may have a considerable impact on the effectiveness of classification algorithms. The suggested solution employs a Machine Learning (ML) based NIDS for hospital networks that utilizes CopulaGAN (Generative Adversarial Network) to address the challenges due to imbalanced class ratio. The synthetic samples of minority classes were created to balance the dataset and improve detection accuracy. The Random Forest (RF) algorithm is used to discover the most defining features in the dataset and its hyperparameters are tuned to improve classification performance. Overall, the CopulaGAN boosted Random Forest based NIDS described here is a valuable solution for detecting network intrusions in hospital networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
小蓝发布了新的文献求助10
3秒前
科研通AI5应助allen7u采纳,获得10
3秒前
完美世界应助单薄二娘采纳,获得10
3秒前
冯俊驰发布了新的文献求助10
3秒前
3秒前
李健应助zhangjianan采纳,获得10
3秒前
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
桐桐应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得30
5秒前
乐乐应助科研通管家采纳,获得30
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
wswswsws应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
周鑫喆完成签到 ,获得积分10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得30
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
加菲丰丰应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
大模型应助yeandpeng采纳,获得10
7秒前
赘婿应助小超采纳,获得10
8秒前
oooiilikk发布了新的文献求助10
8秒前
Mxaxxxx发布了新的文献求助10
8秒前
Lucas应助小房子采纳,获得10
9秒前
科研通AI5应助王迪采纳,获得30
9秒前
田様应助Hikah采纳,获得10
9秒前
彭于晏应助整齐凌萱采纳,获得10
9秒前
11秒前
11秒前
11秒前
13秒前
沉静盼山完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408