CopulaGAN Boosted Random Forest based Network Intrusion Detection System for Hospital Network Infrastructure

入侵检测系统 计算机科学 随机森林 超参数 班级(哲学) 数据挖掘 机器学习 网络安全 人工智能 集合(抽象数据类型) 保护 计算机安全 医学 护理部 程序设计语言
作者
Harshini Sivakami,M Nivedhidha,M P Ramkumar,G. S. R. Emil Selvan
标识
DOI:10.1109/icccnt56998.2023.10306951
摘要

The growing dependence on technology in healthcare has resulted in the creation of sophisticated hospital networks that are highly linked and vulnerable to cyber threats. A reliable Network Intrusion Detection System (NIDS) is required to identify and prevent such cyberattacks. The network intrusion detection is vital for safeguarding hospital networks and guaranteeing data security. The CICIDS2017 dataset contains a comprehensive set of network traffic characteristics for assessing network intrusion detection systems. Besides that, class imbalance is a prevalent difficulty in intrusion detection and it may have a considerable impact on the effectiveness of classification algorithms. The suggested solution employs a Machine Learning (ML) based NIDS for hospital networks that utilizes CopulaGAN (Generative Adversarial Network) to address the challenges due to imbalanced class ratio. The synthetic samples of minority classes were created to balance the dataset and improve detection accuracy. The Random Forest (RF) algorithm is used to discover the most defining features in the dataset and its hyperparameters are tuned to improve classification performance. Overall, the CopulaGAN boosted Random Forest based NIDS described here is a valuable solution for detecting network intrusions in hospital networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dali应助楚子航采纳,获得20
1秒前
老大车完成签到,获得积分10
1秒前
星辰大海应助zhuang采纳,获得30
1秒前
2秒前
帅到被人打完成签到,获得积分10
3秒前
初秋完成签到,获得积分10
3秒前
3秒前
汉堡包应助宋依依采纳,获得10
4秒前
浮游应助Pierce采纳,获得10
5秒前
bbhk完成签到,获得积分10
6秒前
wwqc完成签到,获得积分0
6秒前
Ting发布了新的文献求助20
7秒前
耳火发布了新的文献求助10
7秒前
月月完成签到,获得积分10
7秒前
chen关注了科研通微信公众号
7秒前
8秒前
琳666发布了新的文献求助30
8秒前
8秒前
朱祥龙发布了新的文献求助30
9秒前
10秒前
10秒前
11秒前
wml应助Li采纳,获得10
11秒前
夏晴晴完成签到,获得积分10
12秒前
12秒前
13秒前
受伤尔曼完成签到,获得积分10
13秒前
Pierce完成签到,获得积分10
13秒前
Yu发布了新的文献求助10
14秒前
耳火完成签到,获得积分10
14秒前
zhaosibo020118完成签到,获得积分10
14秒前
CC完成签到,获得积分10
14秒前
15秒前
15秒前
Lucas应助科研通管家采纳,获得30
15秒前
浮游应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
求助人员应助科研通管家采纳,获得10
15秒前
文静香薇完成签到 ,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573