亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CopulaGAN Boosted Random Forest based Network Intrusion Detection System for Hospital Network Infrastructure

入侵检测系统 计算机科学 随机森林 超参数 班级(哲学) 数据挖掘 机器学习 网络安全 人工智能 集合(抽象数据类型) 保护 计算机安全 医学 护理部 程序设计语言
作者
Harshini Sivakami,M Nivedhidha,M P Ramkumar,G. S. R. Emil Selvan
标识
DOI:10.1109/icccnt56998.2023.10306951
摘要

The growing dependence on technology in healthcare has resulted in the creation of sophisticated hospital networks that are highly linked and vulnerable to cyber threats. A reliable Network Intrusion Detection System (NIDS) is required to identify and prevent such cyberattacks. The network intrusion detection is vital for safeguarding hospital networks and guaranteeing data security. The CICIDS2017 dataset contains a comprehensive set of network traffic characteristics for assessing network intrusion detection systems. Besides that, class imbalance is a prevalent difficulty in intrusion detection and it may have a considerable impact on the effectiveness of classification algorithms. The suggested solution employs a Machine Learning (ML) based NIDS for hospital networks that utilizes CopulaGAN (Generative Adversarial Network) to address the challenges due to imbalanced class ratio. The synthetic samples of minority classes were created to balance the dataset and improve detection accuracy. The Random Forest (RF) algorithm is used to discover the most defining features in the dataset and its hyperparameters are tuned to improve classification performance. Overall, the CopulaGAN boosted Random Forest based NIDS described here is a valuable solution for detecting network intrusions in hospital networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VDC发布了新的文献求助10
3秒前
陈梓锋完成签到 ,获得积分10
7秒前
10秒前
yyds完成签到,获得积分0
13秒前
asd完成签到 ,获得积分10
13秒前
14秒前
xlxu发布了新的文献求助10
17秒前
张萌发布了新的文献求助10
18秒前
22秒前
vida完成签到 ,获得积分10
23秒前
仰勒完成签到 ,获得积分10
26秒前
山川日月完成签到,获得积分10
26秒前
懒骨头兄发布了新的文献求助10
27秒前
猫猫祟完成签到 ,获得积分10
32秒前
点点点完成签到 ,获得积分10
38秒前
拼搏向上完成签到,获得积分10
38秒前
inyh59完成签到,获得积分10
39秒前
42秒前
刻苦的溪流完成签到,获得积分10
44秒前
44秒前
sofia发布了新的文献求助10
45秒前
大壮发布了新的文献求助10
47秒前
科目三应助inyh59采纳,获得10
48秒前
shimly0101xx发布了新的文献求助10
49秒前
xyy完成签到,获得积分20
51秒前
Hello应助samsijyu采纳,获得10
52秒前
Lulu完成签到 ,获得积分10
57秒前
summer完成签到 ,获得积分10
57秒前
59秒前
情怀应助cc采纳,获得10
1分钟前
透彻含义发布了新的文献求助10
1分钟前
科研通AI6应助无限猫咪采纳,获得10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
sss完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616992
求助须知:如何正确求助?哪些是违规求助? 4701328
关于积分的说明 14913361
捐赠科研通 4747615
什么是DOI,文献DOI怎么找? 2549174
邀请新用户注册赠送积分活动 1512299
关于科研通互助平台的介绍 1474049