Adaptive Multi-Objective Algorithm for the Sustainable Electric Vehicle Routing Problem in Medical Waste Management

水准点(测量) 能源消耗 分类 车辆路径问题 遗传算法 计算机科学 危险废物 布线(电子设计自动化) 工程类 数学优化 算法 废物管理 机器学习 嵌入式系统 数学 大地测量学 地理 电气工程
作者
Keyong Lin,Siti Nurmaya Musa,Hwa Jen Yap
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2678 (7): 413-433 被引量:5
标识
DOI:10.1177/03611981231207096
摘要

This paper addresses the complex issue of managing medical waste transportation using electric vehicles, with the goal of minimizing both energy consumption and the risks associated with hazardous waste. A multi-objective mixed-integer linear programming model is introduced, incorporating practical factors such as time windows, partial recharge policy, load-dependent discharge, infection risk, and trips to waste disposal facilities. Our proposed method, a combination of the multi-objective evolutionary algorithm using decomposition (MOEA/D) with adaptive large neighborhood search (ALNS) and local search (LS) techniques, is referred to as MOEA/D-ALNS. This method demonstrates superior performance compared with the non-dominated sorting genetic algorithm, NSGA-II, modified MOEA/D and MOEA/D-LNS in benchmark instances with realistic assumptions. Our experimental results revealed an inverse correlation between energy consumption and risk objectives. Sensitivity analyses showed that eliminating time-window constraints results in more energy-efficient and safer routes while maintaining a slightly lower battery energy level can strike an ideal balance between energy consumption, risk, and battery health. This research contributes to the understanding of infectious medical waste management with its consideration of electric vehicles and waste disposal. It lays a solid foundation for future studies aiming to improve the sustainability and efficiency of medical waste routing practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助Starwalker采纳,获得30
刚刚
沐风完成签到 ,获得积分10
3秒前
老阳发布了新的文献求助10
3秒前
小段完成签到,获得积分20
4秒前
5秒前
9秒前
可爱的函函应助迷路荧采纳,获得10
9秒前
秦小狸完成签到 ,获得积分10
10秒前
10秒前
共享精神应助123采纳,获得10
11秒前
深情安青应助肥宅快乐水采纳,获得10
11秒前
infinite完成签到,获得积分10
12秒前
传奇3应助huhao采纳,获得10
14秒前
yy123发布了新的文献求助10
15秒前
16秒前
ww完成签到,获得积分10
21秒前
笑卉发布了新的文献求助10
21秒前
小天发布了新的文献求助10
21秒前
22秒前
无有完成签到,获得积分10
23秒前
24秒前
JamesPei应助研究小白采纳,获得10
25秒前
Starwalker发布了新的文献求助30
25秒前
26秒前
27秒前
27秒前
27秒前
wanci应助老阳采纳,获得10
27秒前
大个应助江峰采纳,获得10
28秒前
田様应助123456采纳,获得10
28秒前
zhaoty完成签到,获得积分10
29秒前
机智的一德完成签到,获得积分10
31秒前
31秒前
32秒前
huhao发布了新的文献求助10
32秒前
32秒前
若尘应助资白玉采纳,获得10
34秒前
36秒前
小二郎应助sun采纳,获得10
36秒前
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738651
求助须知:如何正确求助?哪些是违规求助? 3282034
关于积分的说明 10027372
捐赠科研通 2998753
什么是DOI,文献DOI怎么找? 1645559
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749975