风力发电
摩擦电效应
风速
涡轮机
能量收集
阻力
汽车工程
海洋工程
电气工程
材料科学
功率(物理)
工程类
机械工程
航空航天工程
物理
气象学
复合材料
量子力学
作者
Mingkang Zhu,Yang Yu,Jianyang Zhu,Jiacheng Zhang,Qi Gao,Hengyu Li,Yuejun Zhang,Zhong Lin Wang,Tinghai Cheng
标识
DOI:10.1002/aenm.202303119
摘要
Abstract The triboelectric nanogenerator (TENG) is a promising technology with unique advantages for harvesting environmental high‐entropy energy like wind power. However, inefficient wind energy harvest devices have limited the operating wind speed and practical application of TENGs. In this work, a bionic blade lift‐drag hybrid turbine‐driven triboelectric‐electromagnetic hybrid generator (HT‐TEHG) is designed for broadband wind energy harvesting. The lift‐drag hybrid turbine combines the benefits of drag‐type blades enabling low wind speed start‐up and bionic lift‐type blades generating high torque, achieving an 11% increase in performance. The TENGs are designed with appropriate dielectric layer gaps to balance the output performance and friction torque and are independently driven by two types of blades to achieve self‐adaptive graded power generation at different wind speeds. The starting wind speed of the HT‐TEHG is 2 m s −1 and achieves a peak power of 202.4 mW with an energy conversion efficiency of 9.1% at a wind speed of 4 m s −1 . The durability of the TENG is verified by continuous operation for 1 × 10 5 cycles with almost no performance degradation. Moreover, the HT‐TEHG can power a wireless weather station using natural wind. The study introduces a valuable approach to harvest broadband wind energy and enable distributed power for Internet of Things devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI