Using a physics-based hydrological model and storm transposition to investigate machine-learning algorithms for streamflow prediction

水流 计算机科学 算法 机器学习 后发 人工神经网络 水文模型 人工智能 标杆管理 数据挖掘 气候学 流域 地质学 地图学 营销 业务 地理
作者
Faruk Gürbüz,Avinash Reddy Mudireddy,Ricardo Mantilla,Shaoping Xiao
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:628: 130504-130504
标识
DOI:10.1016/j.jhydrol.2023.130504
摘要

Machine learning (ML) algorithms have produced remarkable advances in streamflow prediction, exceeding the performance of calibrated conceptual and physics-based hydrological models that have been developed over many decades. ML algorithms seem to overcome the issue of errors known to be present in rainfall and streamflow estimates that have hindered the performance of hydrological models for decades. In this paper, we propose a methodology for testing and benchmarking ML algorithms using artificial data generated by physically-based hydrological models. Our approach makes it possible to design controlled numerical experiments that can improve our understanding of this new generation of black-box models. We conducted a diagnostics study to demonstrate our methodology in which we attempted to determine if ML algorithms can identify a function relating streamflow and rainfall. This exercise combined the implementation of the hillslope-link distributed hydrological model (HLM) on a 4,385 km2 basin driven by precipitation fields created using the stochastic storm transposition (SST) framework, and an advanced deep learning algorithm based on gated recurrent unit (GRU)-Attention neural networks. The data generated allowed us to create prediction scenarios that are equivalent to the hindcast and real-time forecast problems. We proposed a set of scale-independent performance metrics to evaluate the results of our experiment and found that the GRU can correctly identify a predictive function for all analyzed locations in the river network. We concluded that under the circumstances tested in this study, deep learning can identify the transformation function when trained in Hindcast Mode, making it a powerful tool to determine the streamflow response of a basin to predetermined rainfall scenarios. However, it fails to significantly outperform the predictions of temporal persistence when tested in Forecast Mode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmb完成签到,获得积分10
刚刚
CodeCraft应助义气绿柳采纳,获得10
1秒前
2秒前
自然背包完成签到,获得积分10
4秒前
打打应助宛海采纳,获得10
5秒前
6秒前
晨熙发布了新的文献求助10
7秒前
麦当劳信徒完成签到,获得积分10
8秒前
8秒前
wying完成签到,获得积分10
9秒前
9秒前
精明芷巧完成签到 ,获得积分10
11秒前
11秒前
研路漫漫完成签到,获得积分10
12秒前
wying发布了新的文献求助30
13秒前
xr发布了新的文献求助10
13秒前
煦白发布了新的文献求助10
14秒前
姜惠完成签到,获得积分10
14秒前
田様应助JacksonHe采纳,获得10
14秒前
高挑的不凡完成签到,获得积分10
14秒前
LIKUN完成签到,获得积分10
16秒前
科研通AI5应助渊思采纳,获得10
16秒前
玄梓寒完成签到 ,获得积分10
16秒前
甜蜜采波完成签到,获得积分10
18秒前
朵朵完成签到,获得积分10
20秒前
酷波er应助邵晓啸采纳,获得10
20秒前
lyn发布了新的文献求助10
20秒前
Rondab应助艺涵采纳,获得10
24秒前
25秒前
yize完成签到,获得积分10
26秒前
Boa完成签到,获得积分10
29秒前
gfbh应助人小鸭儿大采纳,获得10
29秒前
念姬发布了新的文献求助10
29秒前
29秒前
9℃完成签到 ,获得积分10
33秒前
ruiheng发布了新的文献求助10
35秒前
畅快菠萝完成签到,获得积分10
36秒前
Jasper应助猪猪hero采纳,获得10
38秒前
39秒前
篮球完成签到,获得积分10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966147
求助须知:如何正确求助?哪些是违规求助? 3511567
关于积分的说明 11158912
捐赠科研通 3246169
什么是DOI,文献DOI怎么找? 1793309
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343