亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using a physics-based hydrological model and storm transposition to investigate machine-learning algorithms for streamflow prediction

水流 计算机科学 算法 机器学习 后发 人工神经网络 水文模型 人工智能 标杆管理 数据挖掘 气候学 流域 地质学 地图学 营销 业务 地理
作者
Faruk Gürbüz,Avinash Reddy Mudireddy,Ricardo Mantilla,Shaoping Xiao
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:628: 130504-130504
标识
DOI:10.1016/j.jhydrol.2023.130504
摘要

Machine learning (ML) algorithms have produced remarkable advances in streamflow prediction, exceeding the performance of calibrated conceptual and physics-based hydrological models that have been developed over many decades. ML algorithms seem to overcome the issue of errors known to be present in rainfall and streamflow estimates that have hindered the performance of hydrological models for decades. In this paper, we propose a methodology for testing and benchmarking ML algorithms using artificial data generated by physically-based hydrological models. Our approach makes it possible to design controlled numerical experiments that can improve our understanding of this new generation of black-box models. We conducted a diagnostics study to demonstrate our methodology in which we attempted to determine if ML algorithms can identify a function relating streamflow and rainfall. This exercise combined the implementation of the hillslope-link distributed hydrological model (HLM) on a 4,385 km2 basin driven by precipitation fields created using the stochastic storm transposition (SST) framework, and an advanced deep learning algorithm based on gated recurrent unit (GRU)-Attention neural networks. The data generated allowed us to create prediction scenarios that are equivalent to the hindcast and real-time forecast problems. We proposed a set of scale-independent performance metrics to evaluate the results of our experiment and found that the GRU can correctly identify a predictive function for all analyzed locations in the river network. We concluded that under the circumstances tested in this study, deep learning can identify the transformation function when trained in Hindcast Mode, making it a powerful tool to determine the streamflow response of a basin to predetermined rainfall scenarios. However, it fails to significantly outperform the predictions of temporal persistence when tested in Forecast Mode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助nazhang采纳,获得10
5秒前
5秒前
木齐Jay完成签到,获得积分10
6秒前
殷楷霖发布了新的文献求助10
11秒前
汉堡包应助吱吱吱吱采纳,获得10
14秒前
lyfsci完成签到,获得积分10
20秒前
高挑的白旋风完成签到,获得积分10
22秒前
鲤鱼笑南完成签到,获得积分10
25秒前
Green完成签到,获得积分10
30秒前
6666完成签到,获得积分10
37秒前
123完成签到,获得积分10
43秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
殷楷霖发布了新的文献求助10
46秒前
50秒前
51秒前
51秒前
冷酷哈密瓜完成签到,获得积分10
54秒前
科研帽发布了新的文献求助10
54秒前
54秒前
55秒前
56秒前
吞吞完成签到 ,获得积分10
57秒前
端庄千青发布了新的文献求助10
58秒前
土豪的洋葱完成签到,获得积分10
58秒前
Ahan发布了新的文献求助10
59秒前
59秒前
Yingzi发布了新的文献求助10
1分钟前
Orange应助端庄千青采纳,获得10
1分钟前
Ahan完成签到,获得积分10
1分钟前
殷楷霖发布了新的文献求助10
1分钟前
arui发布了新的文献求助10
1分钟前
1分钟前
1分钟前
超级灰狼完成签到 ,获得积分10
1分钟前
1分钟前
深情安青应助小左采纳,获得10
1分钟前
殷楷霖发布了新的文献求助10
1分钟前
1分钟前
无奈母鸡发布了新的文献求助10
1分钟前
呐呐呐呐呐呐完成签到,获得积分10
1分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644480
求助须知:如何正确求助?哪些是违规求助? 4764238
关于积分的说明 15025149
捐赠科研通 4802869
什么是DOI,文献DOI怎么找? 2567659
邀请新用户注册赠送积分活动 1525334
关于科研通互助平台的介绍 1484792