已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using a physics-based hydrological model and storm transposition to investigate machine-learning algorithms for streamflow prediction

水流 计算机科学 算法 机器学习 后发 人工神经网络 水文模型 人工智能 标杆管理 数据挖掘 气候学 流域 地质学 地图学 营销 业务 地理
作者
Faruk Gürbüz,Avinash Reddy Mudireddy,Ricardo Mantilla,Shaoping Xiao
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:628: 130504-130504
标识
DOI:10.1016/j.jhydrol.2023.130504
摘要

Machine learning (ML) algorithms have produced remarkable advances in streamflow prediction, exceeding the performance of calibrated conceptual and physics-based hydrological models that have been developed over many decades. ML algorithms seem to overcome the issue of errors known to be present in rainfall and streamflow estimates that have hindered the performance of hydrological models for decades. In this paper, we propose a methodology for testing and benchmarking ML algorithms using artificial data generated by physically-based hydrological models. Our approach makes it possible to design controlled numerical experiments that can improve our understanding of this new generation of black-box models. We conducted a diagnostics study to demonstrate our methodology in which we attempted to determine if ML algorithms can identify a function relating streamflow and rainfall. This exercise combined the implementation of the hillslope-link distributed hydrological model (HLM) on a 4,385 km2 basin driven by precipitation fields created using the stochastic storm transposition (SST) framework, and an advanced deep learning algorithm based on gated recurrent unit (GRU)-Attention neural networks. The data generated allowed us to create prediction scenarios that are equivalent to the hindcast and real-time forecast problems. We proposed a set of scale-independent performance metrics to evaluate the results of our experiment and found that the GRU can correctly identify a predictive function for all analyzed locations in the river network. We concluded that under the circumstances tested in this study, deep learning can identify the transformation function when trained in Hindcast Mode, making it a powerful tool to determine the streamflow response of a basin to predetermined rainfall scenarios. However, it fails to significantly outperform the predictions of temporal persistence when tested in Forecast Mode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haprier完成签到 ,获得积分10
5秒前
AM发布了新的文献求助30
8秒前
打打应助王冰洁采纳,获得100
10秒前
13秒前
14秒前
16秒前
大宝君发布了新的文献求助30
17秒前
19秒前
tczw667完成签到,获得积分10
20秒前
行者发布了新的文献求助10
20秒前
小章完成签到,获得积分10
21秒前
夏律发布了新的文献求助10
21秒前
22秒前
yang完成签到 ,获得积分10
22秒前
22秒前
25秒前
王冰洁发布了新的文献求助100
27秒前
吴中秋发布了新的文献求助10
27秒前
烟花应助pan采纳,获得10
27秒前
29秒前
杨同学发布了新的文献求助10
30秒前
TTT发布了新的文献求助10
31秒前
惊涛骇浪发布了新的文献求助10
34秒前
ymr完成签到 ,获得积分10
37秒前
文静听南完成签到 ,获得积分10
38秒前
39秒前
Ree完成签到,获得积分20
41秒前
Zeno完成签到 ,获得积分10
41秒前
所所应助吴中秋采纳,获得10
42秒前
asd1576562308完成签到 ,获得积分10
43秒前
欢喜的怜菡完成签到,获得积分10
43秒前
XIEYU发布了新的文献求助30
43秒前
Ree发布了新的文献求助10
47秒前
48秒前
LX有理想完成签到 ,获得积分10
49秒前
璎丸子完成签到,获得积分10
51秒前
TTT完成签到,获得积分10
51秒前
wan12138发布了新的文献求助10
53秒前
54秒前
脑洞疼应助夏律采纳,获得10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573236
求助须知:如何正确求助?哪些是违规求助? 4659412
关于积分的说明 14724454
捐赠科研通 4599168
什么是DOI,文献DOI怎么找? 2524154
邀请新用户注册赠送积分活动 1494679
关于科研通互助平台的介绍 1464704