Using a physics-based hydrological model and storm transposition to investigate machine-learning algorithms for streamflow prediction

水流 计算机科学 算法 机器学习 后发 人工神经网络 水文模型 人工智能 标杆管理 数据挖掘 气候学 流域 地质学 地图学 营销 业务 地理
作者
Faruk Gürbüz,Avinash Reddy Mudireddy,Ricardo Mantilla,Shaoping Xiao
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:628: 130504-130504
标识
DOI:10.1016/j.jhydrol.2023.130504
摘要

Machine learning (ML) algorithms have produced remarkable advances in streamflow prediction, exceeding the performance of calibrated conceptual and physics-based hydrological models that have been developed over many decades. ML algorithms seem to overcome the issue of errors known to be present in rainfall and streamflow estimates that have hindered the performance of hydrological models for decades. In this paper, we propose a methodology for testing and benchmarking ML algorithms using artificial data generated by physically-based hydrological models. Our approach makes it possible to design controlled numerical experiments that can improve our understanding of this new generation of black-box models. We conducted a diagnostics study to demonstrate our methodology in which we attempted to determine if ML algorithms can identify a function relating streamflow and rainfall. This exercise combined the implementation of the hillslope-link distributed hydrological model (HLM) on a 4,385 km2 basin driven by precipitation fields created using the stochastic storm transposition (SST) framework, and an advanced deep learning algorithm based on gated recurrent unit (GRU)-Attention neural networks. The data generated allowed us to create prediction scenarios that are equivalent to the hindcast and real-time forecast problems. We proposed a set of scale-independent performance metrics to evaluate the results of our experiment and found that the GRU can correctly identify a predictive function for all analyzed locations in the river network. We concluded that under the circumstances tested in this study, deep learning can identify the transformation function when trained in Hindcast Mode, making it a powerful tool to determine the streamflow response of a basin to predetermined rainfall scenarios. However, it fails to significantly outperform the predictions of temporal persistence when tested in Forecast Mode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿童木发布了新的文献求助10
刚刚
聽你说完成签到,获得积分10
1秒前
莫道桑榆完成签到,获得积分10
2秒前
sarach发布了新的文献求助10
2秒前
无敌鱼发布了新的文献求助10
3秒前
4秒前
4秒前
初(*^▽^*)心应助蓝风铃采纳,获得10
5秒前
背书强发布了新的文献求助10
6秒前
6秒前
ppg123应助zhangjianzeng采纳,获得10
6秒前
聽你说发布了新的文献求助10
7秒前
方赫然应助唐三神奇采纳,获得10
7秒前
orixero应助冷傲的芾采纳,获得10
7秒前
7秒前
是啊豪ya发布了新的文献求助10
7秒前
8秒前
8秒前
10秒前
龙锐敏完成签到,获得积分10
10秒前
细腻盼烟发布了新的文献求助10
10秒前
HIy发布了新的文献求助10
10秒前
11秒前
啊呜发布了新的文献求助10
11秒前
冯xiaoni发布了新的文献求助10
11秒前
12秒前
12秒前
fyg发布了新的文献求助10
14秒前
16秒前
LiuXiaoJie发布了新的文献求助10
16秒前
16秒前
HIy完成签到,获得积分10
17秒前
17秒前
宋博完成签到,获得积分10
18秒前
方乐驹完成签到,获得积分10
18秒前
水池边完成签到 ,获得积分20
18秒前
Lemon完成签到,获得积分10
19秒前
19秒前
19秒前
是啊豪ya完成签到,获得积分10
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247867
求助须知:如何正确求助?哪些是违规求助? 2891062
关于积分的说明 8266031
捐赠科研通 2559319
什么是DOI,文献DOI怎么找? 1388095
科研通“疑难数据库(出版商)”最低求助积分说明 650694
邀请新用户注册赠送积分活动 627581