材料科学
自愈水凝胶
离子键合
触觉传感器
极限抗拉强度
离子强度
复合材料
纳米技术
计算机科学
机器人
水溶液
人工智能
化学
高分子化学
离子
有机化学
物理化学
作者
Shen Yuan,Ju Bai,Shengzhao Li,Nan Ma,Shihao Deng,Hao Zhu,Tie Li,Ting Zhang
标识
DOI:10.1002/adfm.202309626
摘要
Abstract Inspired by the tactile sensory mechanism of human skin, ionic hydrogels‐derived ionic flexible sensors have attracted much attention since they can produce output signals that match the recognition mode of nerves, showing a potential application in the human‐machine interaction. Unfortunately, the practical sensing properties of ionic hydrogels are restricted by the drawbacks of hydroelastic instability and non‐selective response ability, such as poor mechanical strength, irretentive solvent retaining capacity, and low‐temperature intolerance. Herein, in this study, a novel physical‐crosslink enhanced ionic hydrogel‐PVA/PEG/TA‐MXene‐Na + /Li + (PPM‐NL) nanocomposite is prepared and shows well comprehensive properties of mechanical strength (400% elongation at break, 0.93 MPa), electrical conductivity (8.1 S m −1 ), tear resistance, self‐healing and anti‐freezing/drying features (93% water retention after sixty days and frost resistance −27 °C). The PPM‐NL hydrogel‐derived flexible sensor displays selective response behavior to tensile and compressive deformation with high sensitivity (G = 1.12) and rapid response time (only 60 ms). Further, this ionic flexible device is applied to monitor the joint motions of humanoid hands and integrated into manipulators to recognize the thickness and softness of objects, showing superior environmental stability. It can be believed that this ionic flexible sensor will provide inspiration for developing next‐generation biomimetic tactile perception of robots.
科研通智能强力驱动
Strongly Powered by AbleSci AI