Conductive Hydrogel Restores Electrical Conduction to Promote Neurological Recovery in a Rat Model

导电体 自愈水凝胶 生物医学工程 热传导 导电性 材料科学 化学 生物物理学 医学 复合材料 生物 高分子化学
作者
Yi-Chong Zhang,Alina Yao,Jun Wu,Shuhong Li,Minyao Wang,Zexu Peng,Hsing‐Wen Sung,Baoguo Jiang,Ren‐Ke Li
出处
期刊:Tissue Engineering Part A [Mary Ann Liebert]
卷期号:30 (17-18): 577-587 被引量:2
标识
DOI:10.1089/ten.tea.2023.0372
摘要

Spinal cord injury (SCI), caused by significant physical trauma, as well as other pathological conditions, results in electrical signaling disruption and loss of bodily functional control below the injury site. Conductive biomaterials have been considered a promising approach for treating SCI, owing to their ability to restore electrical connections between intact spinal cord portions across the injury site. In this study, we evaluated the ability of a conductive hydrogel, poly-3-amino-4-methoxybenzoic acid-gelatin (PAMB-G), to restore electrical signaling and improve neuronal regeneration in a rat SCI model generated using the compression clip method. Gelatin or PAMB-G was injected at the SCI site, yielding three groups: Control (saline), Gelatin, and PAMB-G. During the 8-week study, PAMB-G, compared to Control, had significantly lower proinflammatory factor expression, such as for tumor necrosis factor -α (0.388 ± 0.276 for PAMB-G vs. 1.027 ± 0.431 for Control) and monocyte chemoattractant protein (MCP)-1 (0.443 ± 0.201 for PAMB-G vs. 1.662 ± 0.912 for Control). In addition, PAMB-G had lower astrocyte and microglia numbers (35.75 ± 4.349 and 40.75 ± 7.890, respectively) compared to Control (50.75 ± 6.5 and 64.75 ± 10.72) and Gelatin (48.75 ± 4.787 and 71.75 ± 7.411). PAMB-G-treated rats also had significantly greater preservation and regeneration of remaining intact neuronal tissue (0.523 ± 0.059% mean white matter in PAMB-G vs 0.377 ± 0.044% in Control and 0.385 ± 0.051% in Gelatin) caused by reduced apoptosis and increased neuronal growth-associated gene expression. All these processes stemmed from PAMB-G facilitating increased electrical signaling conduction, leading to locomotive functional improvements, in the form of increased Basso-Beattie-Bresnahan scores and steeper angles in the slope test (76.667 ± 5.164 for PAMB-G, vs. 59.167 ± 4.916 for Control and 58.333 ± 4.082 for Gelatin), as well as reduced gastrocnemius muscle atrophy (0.345 ± 0.085 for PAMB-G, vs. 0.244 ± 0.021 for Control and 0.210 ± 0.058 for Gelatin). In conclusion, PAMB-G injection post-SCI resulted in improved electrical signaling conduction, which contributed to lowered inflammation and apoptosis, increased neuronal growth, and greater bodily functional control, suggesting its potential as a viable treatment for SCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzcres完成签到,获得积分10
刚刚
1秒前
不配.应助柚子茶采纳,获得150
1秒前
2秒前
pp完成签到,获得积分10
2秒前
耳喃发布了新的文献求助10
3秒前
所所应助风信子采纳,获得10
3秒前
天真的初蓝完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
5秒前
徐萌完成签到 ,获得积分10
6秒前
shiyi完成签到,获得积分10
7秒前
善学以致用应助天真大神采纳,获得10
7秒前
Ava应助灵巧鹤采纳,获得10
8秒前
10秒前
清新发布了新的文献求助10
10秒前
直率飞柏发布了新的文献求助10
11秒前
肚子好e啊完成签到 ,获得积分10
11秒前
Kent完成签到 ,获得积分10
12秒前
14秒前
xxfsx应助凯凯采纳,获得10
15秒前
苏苏发布了新的文献求助10
15秒前
16秒前
浮游应助大大小采纳,获得10
18秒前
20秒前
传奇3应助直率飞柏采纳,获得10
21秒前
21秒前
21秒前
胖虎完成签到 ,获得积分10
21秒前
CodeCraft应助jason采纳,获得10
22秒前
22秒前
嗯哈发布了新的文献求助10
23秒前
王涛发布了新的文献求助10
25秒前
xx发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
25秒前
lorryyyy发布了新的文献求助10
26秒前
wanci应助Lee采纳,获得10
28秒前
xxfsx应助凯凯采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458536
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295673
捐赠科研通 4489566
什么是DOI,文献DOI怎么找? 2459081
邀请新用户注册赠送积分活动 1448892
关于科研通互助平台的介绍 1424474