Conductive Hydrogel Restores Electrical Conduction to Promote Neurological Recovery in a Rat Model

导电体 自愈水凝胶 生物医学工程 热传导 导电性 材料科学 化学 生物物理学 医学 复合材料 生物 高分子化学
作者
Yi-Chong Zhang,Alina Yao,Jun Wu,Shuhong Li,Min-Yao Wang,Zexu Peng,Hsing‐Wen Sung,Baoguo Jiang,Ren‐Ke Li
出处
期刊:Tissue Engineering Part A [Mary Ann Liebert]
卷期号:30 (17-18): 577-587
标识
DOI:10.1089/ten.tea.2023.0372
摘要

Spinal cord injury (SCI), caused by significant physical trauma, as well as other pathological conditions, results in electrical signaling disruption and loss of bodily functional control below the injury site. Conductive biomaterials have been considered a promising approach for treating SCI, owing to their ability to restore electrical connections between intact spinal cord portions across the injury site. In this study, we evaluated the ability of a conductive hydrogel, poly-3-amino-4-methoxybenzoic acid-gelatin (PAMB-G), to restore electrical signaling and improve neuronal regeneration in a rat SCI model generated using the compression clip method. Gelatin or PAMB-G was injected at the SCI site, yielding three groups: Control (saline), Gelatin, and PAMB-G. During the 8-week study, PAMB-G, compared to Control, had significantly lower proinflammatory factor expression, such as for tumor necrosis factor -α (0.388 ± 0.276 for PAMB-G vs. 1.027 ± 0.431 for Control) and monocyte chemoattractant protein (MCP)-1 (0.443 ± 0.201 for PAMB-G vs. 1.662 ± 0.912 for Control). In addition, PAMB-G had lower astrocyte and microglia numbers (35.75 ± 4.349 and 40.75 ± 7.890, respectively) compared to Control (50.75 ± 6.5 and 64.75 ± 10.72) and Gelatin (48.75 ± 4.787 and 71.75 ± 7.411). PAMB-G-treated rats also had significantly greater preservation and regeneration of remaining intact neuronal tissue (0.523 ± 0.059% mean white matter in PAMB-G vs 0.377 ± 0.044% in Control and 0.385 ± 0.051% in Gelatin) caused by reduced apoptosis and increased neuronal growth-associated gene expression. All these processes stemmed from PAMB-G facilitating increased electrical signaling conduction, leading to locomotive functional improvements, in the form of increased Basso-Beattie-Bresnahan scores and steeper angles in the slope test (76.667 ± 5.164 for PAMB-G, vs. 59.167 ± 4.916 for Control and 58.333 ± 4.082 for Gelatin), as well as reduced gastrocnemius muscle atrophy (0.345 ± 0.085 for PAMB-G, vs. 0.244 ± 0.021 for Control and 0.210 ± 0.058 for Gelatin). In conclusion, PAMB-G injection post-SCI resulted in improved electrical signaling conduction, which contributed to lowered inflammation and apoptosis, increased neuronal growth, and greater bodily functional control, suggesting its potential as a viable treatment for SCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
英姑应助Juan_He采纳,获得10
2秒前
bingsen发布了新的文献求助10
3秒前
善学以致用应助哎嘤斯坦采纳,获得10
3秒前
茜茜008发布了新的文献求助10
4秒前
香蕉觅云应助戴先森采纳,获得10
4秒前
思源应助板栗子采纳,获得10
4秒前
共享精神应助mage采纳,获得10
5秒前
Liou应助lalalapa666采纳,获得10
5秒前
_firework_发布了新的文献求助10
6秒前
6秒前
所所应助大意的绿草采纳,获得10
6秒前
CipherSage应助fly采纳,获得10
6秒前
xsc完成签到 ,获得积分10
6秒前
舒服的灵安完成签到 ,获得积分10
7秒前
爆米花应助ohhhh采纳,获得10
7秒前
8秒前
活力热狗应助ZXT采纳,获得10
8秒前
9秒前
爆米花应助hanhan采纳,获得10
9秒前
10秒前
科研通AI2S应助greatsnow采纳,获得10
10秒前
文献狗完成签到,获得积分10
11秒前
西伯侯发布了新的文献求助10
11秒前
诸葛烤鸭发布了新的文献求助10
11秒前
yutou完成签到,获得积分10
12秒前
12秒前
12秒前
认真龙猫发布了新的文献求助10
12秒前
李爱国应助飞快的以冬采纳,获得10
15秒前
阳光向日葵完成签到,获得积分10
15秒前
15秒前
15秒前
戴先森发布了新的文献求助10
15秒前
烟花应助pinkpink采纳,获得10
16秒前
fly发布了新的文献求助10
16秒前
Emily完成签到,获得积分10
17秒前
赘婿应助三木采纳,获得10
17秒前
仁爱的戒指完成签到 ,获得积分10
17秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262319
求助须知:如何正确求助?哪些是违规求助? 2903010
关于积分的说明 8323831
捐赠科研通 2573054
什么是DOI,文献DOI怎么找? 1398041
科研通“疑难数据库(出版商)”最低求助积分说明 653988
邀请新用户注册赠送积分活动 632568