Enhancing healthcare decision support through explainable AI models for risk prediction

可解释性 聚类分析 机器学习 预测能力 人工神经网络 预测建模 计算机科学 预测分析 数据挖掘 人工智能 哲学 认识论
作者
Shuai Niu,Q Yin,Jing Ma,Yunya Song,Richard Yi Da Xu,Liang Bai,Wei Pan,Xian Yang
出处
期刊:Decision Support Systems [Elsevier BV]
卷期号:181: 114228-114228 被引量:9
标识
DOI:10.1016/j.dss.2024.114228
摘要

Electronic health records (EHRs) are a valuable source of information that can aid in understanding a patient's health condition and making informed healthcare decisions. However, modelling longitudinal EHRs with heterogeneous information is a challenging task. Although recurrent neural networks (RNNs), which are current artificial intelligence (AI) models, have the capability to capture longitudinal information, their explanatory power is limited. Predictive clustering is a recent development in this field, which provides cluster-level explainable evidence for disease risk prediction. Nonetheless, the challenge of determining the optimal number of clusters has put a brake on the widespread application of predictive clustering for disease risk prediction. In this paper, we introduce a novel non-parametric predictive clustering-based risk prediction model that integrates the Dirichlet Process Mixture Model (DPMM) with predictive clustering via neural networks. To enhance the model's interpretability, we integrate attention mechanisms that enable the capture of local-level evidence in addition to the cluster-level evidence provided by predictive clustering. The outcome of this research is the development of a multi-level explainable artificial intelligence (AI) model. We evaluated the proposed model on two real-world datasets and demonstrated its effectiveness in capturing longitudinal EHR information for disease risk prediction. Additionally, the model was successful in generating explainable evidence to support its predictions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
温瞳发布了新的文献求助10
1秒前
2秒前
斐然诗完成签到,获得积分10
2秒前
2秒前
深情安青应助meimale采纳,获得10
2秒前
井野浮发布了新的文献求助10
3秒前
李哩哩发布了新的文献求助10
3秒前
茴茴完成签到,获得积分20
4秒前
4秒前
4秒前
半柚应助labxgr采纳,获得10
4秒前
5秒前
5秒前
5秒前
鹤舞九天发布了新的文献求助10
5秒前
王九八发布了新的文献求助10
6秒前
小天完成签到,获得积分10
6秒前
杜ss发布了新的文献求助10
7秒前
笨笨芯发布了新的文献求助10
7秒前
8秒前
liuxuwei发布了新的文献求助10
8秒前
共享精神应助灰哥的灰采纳,获得10
9秒前
10秒前
10秒前
Ava应助笨笨芯采纳,获得10
11秒前
medlive2020完成签到,获得积分10
12秒前
txy完成签到,获得积分10
13秒前
老实续发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
15秒前
15秒前
medlive2020发布了新的文献求助10
16秒前
领导范儿应助小达采纳,获得10
16秒前
书于竹帛发布了新的文献求助10
16秒前
呱呱完成签到,获得积分10
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961892
求助须知:如何正确求助?哪些是违规求助? 3508143
关于积分的说明 11139862
捐赠科研通 3240824
什么是DOI,文献DOI怎么找? 1791076
邀请新用户注册赠送积分活动 872725
科研通“疑难数据库(出版商)”最低求助积分说明 803344