A data-driven hybrid sensor fault detection/diagnosis method with flight test data

算法 残余物 计算机科学 故障检测与隔离 卡尔曼滤波器 断层(地质) 超参数 人工智能 地震学 执行机构 地质学
作者
Jinsheng Song,Ziqiao Chen,Dong Wang,Xin Wen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 076109-076109
标识
DOI:10.1088/1361-6501/ad3976
摘要

Abstract Fault diagnosis of multi-source signal systems is critical for the safe and reliable operation of modern industrial systems, and accurate fault diagnosis of systems based on multi-source signals remains challenging. This study proposes a data-driven hybrid fault detection/diagnosis method to identify sensor faults in complex systems through interactions between multiple sensors. Dynamic mode decomposition with control is used to obtain the approximate model of the investigated system from multi-source signals, extract the underlying physical mechanisms, combined with the Kalman filter observer to generate the residual between the observed data and the predicted data. Then the residual (moving innovation covariance matrix V k ) is input into the k -nearest neighbor classification algorithm for fault detection and diagnosis. The effectiveness of the proposed method was evaluated using the flight test braking system dataset. The results showed that the accuracy of the proposed method in fault detection and diagnosis (with accuracies of 100% and 100%, respectively) was significantly improved than that of using raw signal data (76.6% and 6.38%) or raw signal data and V k (80.85% and 42.55%). The analysis of different parameters including fault severity, algorithm hyperparameter k , and sensor type showed that the proposed method has high robustness, generalization ability, and practicality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助风趣安青采纳,获得10
2秒前
酷酷发布了新的文献求助10
3秒前
fc小肥杨完成签到,获得积分10
3秒前
zzy发布了新的文献求助10
3秒前
上官若男应助隔壁老王采纳,获得10
3秒前
spotless完成签到,获得积分10
4秒前
王卫完成签到,获得积分10
4秒前
快来跑步发布了新的文献求助10
5秒前
cong315完成签到,获得积分10
5秒前
ggn发布了新的文献求助10
8秒前
9秒前
10秒前
子车茗应助科研通管家采纳,获得30
10秒前
大模型应助科研通管家采纳,获得10
11秒前
11秒前
英姑应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
Leif应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
11秒前
听雨完成签到,获得积分10
15秒前
隔壁老王发布了新的文献求助10
15秒前
打打应助乙二胺四乙酸采纳,获得10
18秒前
18秒前
学阀小智发布了新的文献求助10
21秒前
yifanchen应助zt采纳,获得10
22秒前
22秒前
23秒前
英姑应助叶绿体机智采纳,获得10
23秒前
24秒前
oMayii完成签到 ,获得积分10
25秒前
顾矜应助灵巧书文采纳,获得10
25秒前
姜姜发布了新的文献求助10
27秒前
霜降完成签到 ,获得积分10
27秒前
平常的可乐完成签到 ,获得积分10
28秒前
28秒前
byb完成签到 ,获得积分10
29秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329591
求助须知:如何正确求助?哪些是违规求助? 2959170
关于积分的说明 8594608
捐赠科研通 2637675
什么是DOI,文献DOI怎么找? 1443672
科研通“疑难数据库(出版商)”最低求助积分说明 668807
邀请新用户注册赠送积分活动 656231