Artificial intelligence facial recognition system for diagnosis of endocrine and metabolic syndromes based on a facial image database

人工智能 模式识别(心理学) 支持向量机 主成分分析 Boosting(机器学习) 阿达布思 分类器(UML) 计算机科学 机器学习
作者
Danning Wu,Jiaqi Qiang,Weixin Hong,Hanze Du,Hongbo Yang,Huijuan Zhu,Hui Pan,Zhen Shen,Shi Chen
出处
期刊:Diabetes and Metabolic Syndrome: Clinical Research and Reviews [Elsevier]
卷期号:18 (4): 103003-103003 被引量:2
标识
DOI:10.1016/j.dsx.2024.103003
摘要

To build a facial image database and to explore the diagnostic efficacy and influencing factors of the artificial intelligence-based facial recognition (AI-FR) system for multiple endocrine and metabolic syndromes. Individuals with multiple endocrine and metabolic syndromes and healthy controls were included from public literature and databases. In this facial image database, facial images and clinical data were collected for each participant and dFRI (disease facial recognition intensity) was calculated to quantify facial complexity of each syndrome. AI-FR diagnosis models were trained for each disease using three algorithms: support vector machine (SVM), principal component analysis k-nearest neighbor (PCA-KNN), and adaptive boosting (AdaBoost). Diagnostic performance was evaluated. Optimal efficacy was achieved as the best index among the three models. Effect factors of AI-FR diagnosis were explored with regression analysis. 462 cases of 10 endocrine and metabolic syndromes and 2150 controls were included into the facial image database. The AI-FR diagnostic models showed diagnostic accuracies of 0.827–0.920 with SVM, 0.766–0.890 with PCA-KNN, and 0.818–0.935 with AdaBoost. Higher dFRI was associated with higher diagnostic accuracy with AdaBoost (P = 0.033), and higher optimal accuracy (P = 0.021) and better area under the curve (AUC) (P = 0.011) among the three models. No significant correlation was observed between the sample size of the training set and accuracy. A multi-ethnic, multi-regional, and multi-disease facial database for 10 endocrine and metabolic syndromes was built. AI-FR models displayed ideal diagnostic performance. dFRI proved associated with the diagnostic efficacy, suggesting inherent facial features might contribute to the performance of AI-FR models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
帅气成仁发布了新的文献求助20
刚刚
1秒前
strickland完成签到,获得积分10
1秒前
1秒前
Akim应助RNNNLL采纳,获得10
1秒前
张童鞋发布了新的文献求助10
1秒前
yu发布了新的文献求助10
1秒前
李爱国应助ZJPPPP采纳,获得10
2秒前
77发布了新的文献求助10
2秒前
chen应助含蓄曼凡采纳,获得10
2秒前
3秒前
彭于晏应助勤恳冰淇淋采纳,获得30
3秒前
cocolu应助香蕉茹妖采纳,获得10
3秒前
Aloha完成签到,获得积分10
3秒前
整齐的一手完成签到,获得积分10
3秒前
song完成签到,获得积分20
4秒前
4秒前
5秒前
5秒前
赴约发布了新的文献求助10
5秒前
轻松的易烟完成签到,获得积分10
6秒前
7秒前
书羽完成签到,获得积分10
7秒前
所所应助喜悦采枫采纳,获得30
8秒前
bkagyin应助张永乐采纳,获得10
8秒前
星辰大海应助strickland采纳,获得30
8秒前
song发布了新的文献求助10
8秒前
orixero应助大胆的蜜粉采纳,获得10
9秒前
wu发布了新的文献求助10
9秒前
JamesPei应助勤奋小张采纳,获得10
9秒前
慕青应助szh123采纳,获得10
10秒前
成就的笑南完成签到 ,获得积分10
10秒前
kkk发布了新的文献求助10
10秒前
10秒前
帅气成仁完成签到,获得积分10
10秒前
JIAca发布了新的文献求助10
11秒前
细腻的纸飞机完成签到,获得积分20
11秒前
安娜发布了新的文献求助10
13秒前
深情安青应助酷炫便当采纳,获得10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3451395
求助须知:如何正确求助?哪些是违规求助? 3046974
关于积分的说明 9008224
捐赠科研通 2735709
什么是DOI,文献DOI怎么找? 1500399
科研通“疑难数据库(出版商)”最低求助积分说明 693605
邀请新用户注册赠送积分活动 691817