Improved YOLOv8 for B-scan image flaw detection of the heavy-haul railway

帧(网络) 计算机科学 重型的 航程(航空) 工程类 数据挖掘 电信 汽车工程 航空航天工程
作者
Chengshui Yu,Yue Liu,Yuan Cao,Yongkui Sun,Shuai Su,Weifeng Yang,Wenkun Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 076106-076106 被引量:1
标识
DOI:10.1088/1361-6501/ad3a05
摘要

Abstract With the high speed and heavy duty of railway transportation, internal flaw detection of railway rails has become a hot issue. Existing rail flaw detection systems have problems of low detection accuracy and occasional missed flaw detection. In this paper, a high-precision flaw detection based on data augmentation and YOLOv8 improvement is proposed. Firstly, three data augmentation algorithms based on the characteristics of B-scan images are designed to enrich the dataset of rail flaws. Then, the small target detection layer and the cross-layer connectivity module are added to capture more information for small targets. Finally, the introduction of dynamic weights to coordinate attention can adjust the attentional weights and capture long-range information. The experimental results show that the mAP50 of the model after data enhancement and algorithm improvement is 97.9%, which is improved by 4.4% from the baseline model, and the frame per second is 64.52. The proposed method effectively detects many typical flaws, including the railhead flaw, rail jaw flaw, screw hole crack, and bottom flaw, which can provide technology supports for on-site maintenance staff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
4秒前
Xulyun完成签到 ,获得积分10
4秒前
7秒前
可咳咳咳发布了新的文献求助10
7秒前
7秒前
我是老大应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得30
9秒前
ding应助科研通管家采纳,获得10
10秒前
10秒前
不配.应助科研通管家采纳,获得10
10秒前
itsserene应助科研通管家采纳,获得30
10秒前
义气雍发布了新的文献求助10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
10秒前
二哈应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
13秒前
13秒前
灵巧妙芙发布了新的文献求助10
15秒前
拾捌完成签到,获得积分10
15秒前
wk_sea完成签到,获得积分10
18秒前
x5kyi发布了新的文献求助30
19秒前
都会完成签到 ,获得积分10
20秒前
今后应助都是采纳,获得10
20秒前
西皮发布了新的文献求助10
20秒前
shining发布了新的文献求助10
22秒前
24秒前
我是老大应助jxy09156采纳,获得10
24秒前
JD.发布了新的文献求助10
29秒前
不爱吃醋完成签到,获得积分10
30秒前
思源应助11采纳,获得10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791830
捐赠科研通 2445993
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079