清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Establishment and application of a quadruplex real-time RT-qPCR assay for differentiation of TGEV, PEDV, PDCoV, and PoRVA

病毒学 生物 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 实时聚合酶链反应 2019年冠状病毒病(COVID-19) 2019-20冠状病毒爆发 冠状病毒 基因 遗传学 医学 疾病 病理 爆发 传染病(医学专业)
作者
Hechao Zhu,Geng Wang,Xiangzu Liu,Wenqing Wu,Teng Yu,Weichao Zhang,Xiangdong Liu,Guofu Cheng,Liuqing Wei,Lumei Ni,Zhong Peng,Xiangmin Li,Dequan Xu,Ping Qian,Pin Chen
出处
期刊:Microbial Pathogenesis [Elsevier BV]
卷期号:191: 106646-106646 被引量:3
标识
DOI:10.1016/j.micpath.2024.106646
摘要

Porcine viral diarrhea is a common ailment in clinical settings, causing significant economic losses to the swine industry. Notable culprits behind porcine viral diarrhea encompass transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA). Co-infections involving the viruses are a common occurrence in clinical settings, thereby amplifying the complexities associated with differential diagnosis. As a consequence, it is therefore necessary to develop a method that can detect and differentiate all four porcine diarrhea viruses (TGEV, PEDV, PDCoV, and PoRVA) with a high sensitivity and specificity. Presently, polymerase chain reaction (PCR) is the go-to method for pathogen detection. In comparison to conventional PCR, TaqMan real-time PCR offers heightened sensitivity, superior specificity, and enhanced accuracy. This study aimed to develop a quadruplex real-time RT-qPCR assay, utilizing TaqMan probes, for the distinctive detection of TGEV, PEDV, PDCoV, and PoRVA. The quadruplex real-time RT-qPCR assay, as devised in this study, exhibited the capacity to avoid the detection of unrelated pathogens and demonstrated commendable specificity, sensitivity, repeatability, and reproducibility, boasting a limit of detection (LOD) of 27 copies/μL. In a comparative analysis involving 5483 clinical samples, the results from the commercial RT-qPCR kit and the quadruplex RT-qPCR for TGEV, PEDV, PDCoV, and PoRVA detection were entirely consistent. Following sample collection from October to March in Guangxi Zhuang Autonomous Region, we assessed the prevalence of TGEV, PEDV, PDCoV, and PoRVA in piglet diarrhea samples, revealing positive detection rates of 0.2 % (11/5483), 8.82 % (485/5483), 1.22 % (67/5483), and 4.94 % (271/5483), respectively. The co-infection rates of PEDV/PoRVA, PEDV/PDCoV, TGEV/PED/PoRVA, and PDCoV/PoRVA were 0.39 %, 0.11 %, 0.01 %, and 0.03 %, respectively, with no detection of other co-infections, as determined by the quadruplex real-time RT-qPCR. This research not only established a valuable tool for the simultaneous differentiation of TGEV, PEDV, PDCoV, and PoRVA in practical applications but also provided crucial insights into the prevalence of these viral pathogens causing diarrhea in Guangxi.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖小羊完成签到 ,获得积分10
1分钟前
yo一天完成签到,获得积分10
1分钟前
星际舟完成签到,获得积分10
2分钟前
凡笙发布了新的文献求助10
2分钟前
科研通AI5应助凡笙采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得20
3分钟前
科研通AI2S应助科研通管家采纳,获得15
3分钟前
Dave完成签到 ,获得积分10
3分钟前
3分钟前
tian发布了新的文献求助10
3分钟前
科研通AI5应助tian采纳,获得10
4分钟前
穆一手完成签到 ,获得积分10
4分钟前
4分钟前
yuzao发布了新的文献求助10
4分钟前
实力不允许完成签到 ,获得积分10
4分钟前
研友_nxw2xL完成签到,获得积分10
5分钟前
muriel完成签到,获得积分10
5分钟前
5分钟前
凡笙发布了新的文献求助10
5分钟前
lyj完成签到 ,获得积分10
5分钟前
牛八先生完成签到,获得积分10
5分钟前
minuxSCI完成签到,获得积分10
5分钟前
林利芳完成签到 ,获得积分10
6分钟前
貔貅完成签到 ,获得积分10
6分钟前
闪闪的谷梦完成签到 ,获得积分10
6分钟前
Emperor完成签到 ,获得积分0
7分钟前
oscar完成签到,获得积分10
7分钟前
cy0824完成签到 ,获得积分10
7分钟前
人类繁殖学完成签到 ,获得积分10
8分钟前
8分钟前
无私曼卉发布了新的文献求助10
8分钟前
Ann发布了新的文献求助10
9分钟前
ding应助qiqi1111采纳,获得10
9分钟前
9分钟前
田様应助科研通管家采纳,获得30
9分钟前
内向映天完成签到 ,获得积分10
9分钟前
qiqi1111发布了新的文献求助10
9分钟前
9分钟前
Ann发布了新的文献求助10
9分钟前
Ann完成签到,获得积分10
9分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736655
求助须知:如何正确求助?哪些是违规求助? 3280645
关于积分的说明 10020153
捐赠科研通 2997322
什么是DOI,文献DOI怎么找? 1644527
邀请新用户注册赠送积分活动 782060
科研通“疑难数据库(出版商)”最低求助积分说明 749656