清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Design of a novel hybrid quantum deep neural network in INEQR images classification

MNIST数据库 计算机科学 卷积神经网络 量子电路 参数化复杂度 量子 人工神经网络 上下文图像分类 特征(语言学) 人工智能 模式识别(心理学) 量子门 算法 二元分类 量子算法 深度学习 量子计算机 量子网络 图像(数学) 支持向量机 物理 哲学 量子力学 语言学
作者
Shuang Wang,Ke-Han Wang,Tao Cheng,Run-Sheng Zhao,Hongyang Ma,Shuai Guo
出处
期刊:Chinese Physics B [IOP Publishing]
卷期号:33 (6): 060310-060310
标识
DOI:10.1088/1674-1056/ad342e
摘要

We redesign the parameterized quantum circuit in the quantum deep neural network, construct a three-layer structure as the hidden layer, and then use classical optimization algorithms to train the parameterized quantum circuit, thereby propose a novel hybrid quantum deep neural network (HQDNN) used for image classification. After bilinear interpolation reduces the original image to a suitable size, an improved novel enhanced quantum representation (INEQR) is used to encode it into quantum states as the input of the HQDNN. Multi-layer parameterized quantum circuits are used as the main structure to implement feature extraction and classification. The output results of parameterized quantum circuits are converted into classical data through quantum measurements and then optimized on a classical computer. To verify the performance of the HQDNN, we conduct binary classification and three classification experiments on the MNIST (Modified National Institute of Standards and Technology) data set. In the first binary classification, the accuracy of 0 and 4 exceeds 98%. Then we compare the performance of three classification with other algorithms, the results on two datasets show that the classification accuracy is higher than that of quantum deep neural network and general quantum convolutional neural network.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老迟到的友桃完成签到 ,获得积分10
19秒前
dayday完成签到,获得积分10
20秒前
刘刘完成签到 ,获得积分10
25秒前
42秒前
合适醉蝶完成签到 ,获得积分10
45秒前
jqliu发布了新的文献求助10
50秒前
51秒前
Omni发布了新的文献求助10
57秒前
oleskarabach发布了新的文献求助10
1分钟前
兴奋的新蕾完成签到,获得积分10
1分钟前
建建完成签到 ,获得积分10
1分钟前
愤怒的念蕾完成签到,获得积分10
1分钟前
科目三应助cugwzr采纳,获得10
1分钟前
小金刀发布了新的文献求助10
1分钟前
小刘同学完成签到,获得积分10
2分钟前
小白完成签到 ,获得积分10
2分钟前
dream完成签到 ,获得积分10
2分钟前
小金刀完成签到,获得积分10
2分钟前
沙海沉戈完成签到,获得积分0
2分钟前
Lucas应助Omni采纳,获得10
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
清脆的靖仇完成签到,获得积分10
3分钟前
3分钟前
cugwzr发布了新的文献求助10
3分钟前
4分钟前
4分钟前
sonicker完成签到 ,获得积分10
4分钟前
Lexi发布了新的文献求助10
4分钟前
鲤鱼山人完成签到 ,获得积分10
4分钟前
Omni发布了新的文献求助10
4分钟前
oleskarabach发布了新的文献求助10
4分钟前
华仔应助科研通管家采纳,获得10
4分钟前
年轻千愁完成签到 ,获得积分10
5分钟前
志怪大人完成签到 ,获得积分10
5分钟前
jlwang完成签到,获得积分10
6分钟前
hugeyoung完成签到,获得积分10
6分钟前
oleskarabach完成签到,获得积分20
6分钟前
ceeray23发布了新的文献求助20
6分钟前
小蘑菇应助Lexi采纳,获得10
6分钟前
cugwzr完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558693
求助须知:如何正确求助?哪些是违规求助? 4643777
关于积分的说明 14671437
捐赠科研通 4585146
什么是DOI,文献DOI怎么找? 2515397
邀请新用户注册赠送积分活动 1489437
关于科研通互助平台的介绍 1460192