Numerical investigation into turbulent drag reduction via the application of pufferfish spine-inspired cone microstructures in Suboff models

阻力 还原(数学) 湍流 Cone(正式语言) 机械 脊柱(分子生物学) 材料科学 物理 航空航天工程 经典力学 计算机科学 几何学 数学 生物 算法 分子生物学 工程类
作者
Lei Zhao,D. Zhu,Xiaoming Feng,Bo Chen,Guizhong Tian,Kexin Wei,Zhiyuan Song
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (5): 055004-055004 被引量:2
标识
DOI:10.1088/1402-4896/ad3507
摘要

Abstract The effective reduction of seawater drag is pivotal in enhancing the speed and minimizing the energy consumption of submarines, which has significant implications in the fields of energy and defense. Surface bionics has emerged as one of the leading techniques for drag reduction. Current research primarily focuses on replicating the groove-like structures observed on shark skins and the flexible properties of dolphin skins. However, the application of cone microstructures on submarine surfaces remains relatively underexplored. In this study, a novel arrangement of bionic drag-reducing microstructures is employed to modify the turbulence structure surrounding the submarine by incorporating bionic cone microstructures at both the front and rear ends of the submarine. Numerical simulations were performed using the SST k-ω turbulence model to evaluate the impact of these frontal microstructures on drag reduction under varying Reynolds numbers, spacings, and positions, as well as the tail microstructures’ effect at different Reynolds numbers, heights, and circumferential separation angles. The findings reveal that positioning microstructures at the submarine’s head increases the drag reduction rate proportionally with the distance from the apex, displaying an inverse relationship between spacing and drag reduction rate. Conversely, an increase in cone separation angle at the tail leads to a decrease in the overall drag reduction rate. At the same time, an inverse proportionality is observed between cone height and drag reduction rate. This suggests that cone microstructures play a dual role: mitigating friction drag greatly and augmenting pressure drag, thereby achieving overall drag reduction. Moreover, these cone microstructures disrupt eddy currents within the boundary layer surrounding the submarine, restraining the propagation of turbulent momentum transfer in both the head and tail regions. This research not only pioneers a novel drag reduction strategy for underwater vehicles but also sparks new avenues for their optimized surface design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南上完成签到,获得积分10
1秒前
fyt398398发布了新的文献求助10
1秒前
上官若男应助害羞的书芹采纳,获得10
1秒前
叶问夏完成签到 ,获得积分10
2秒前
细心半雪完成签到 ,获得积分10
2秒前
2秒前
christal完成签到 ,获得积分10
2秒前
陈晗予发布了新的文献求助10
4秒前
黑风小妖发布了新的文献求助10
5秒前
spainraul完成签到,获得积分10
6秒前
6秒前
脑洞疼应助Alois采纳,获得50
7秒前
Autumn完成签到,获得积分10
7秒前
7秒前
wen应助霸气的汽车采纳,获得30
8秒前
Kathy完成签到,获得积分10
8秒前
甜甜的莞完成签到,获得积分10
8秒前
小丸子完成签到 ,获得积分10
8秒前
8秒前
十二完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
领导范儿应助Seule采纳,获得10
11秒前
12秒前
十二发布了新的文献求助30
12秒前
yaozi发布了新的文献求助10
13秒前
14秒前
伊蕾娜完成签到 ,获得积分10
14秒前
MDX发布了新的文献求助10
14秒前
苗条的桐发布了新的文献求助10
14秒前
Miki完成签到,获得积分10
14秒前
azz发布了新的文献求助10
15秒前
酷波er应助红土豆瓣酱采纳,获得10
16秒前
17秒前
17秒前
Tara发布了新的文献求助10
17秒前
18秒前
19秒前
我是老大应助闪闪雁采纳,获得10
20秒前
高分求助中
Handbook of Fuel Cells, 6 Volume Set 1666
求助这个网站里的问题集 1000
Floxuridine; Third Edition 1000
Tracking and Data Fusion: A Handbook of Algorithms 1000
La décision juridictionnelle 800
Rechtsphilosophie und Rechtstheorie 800
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 冶金 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2865631
求助须知:如何正确求助?哪些是违规求助? 2472394
关于积分的说明 6703323
捐赠科研通 2161422
什么是DOI,文献DOI怎么找? 1148204
版权声明 585451
科研通“疑难数据库(出版商)”最低求助积分说明 564041