已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Numerical investigation into turbulent drag reduction via the application of pufferfish spine-inspired cone microstructures in Suboff models

阻力 还原(数学) 湍流 Cone(正式语言) 机械 脊柱(分子生物学) 材料科学 物理 航空航天工程 经典力学 计算机科学 几何学 数学 生物 算法 分子生物学 工程类
作者
Lei Zhao,D. Zhu,Xiaoming Feng,Bo Chen,Guizhong Tian,Kexin Wei,Zhiyuan Song
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (5): 055004-055004 被引量:2
标识
DOI:10.1088/1402-4896/ad3507
摘要

Abstract The effective reduction of seawater drag is pivotal in enhancing the speed and minimizing the energy consumption of submarines, which has significant implications in the fields of energy and defense. Surface bionics has emerged as one of the leading techniques for drag reduction. Current research primarily focuses on replicating the groove-like structures observed on shark skins and the flexible properties of dolphin skins. However, the application of cone microstructures on submarine surfaces remains relatively underexplored. In this study, a novel arrangement of bionic drag-reducing microstructures is employed to modify the turbulence structure surrounding the submarine by incorporating bionic cone microstructures at both the front and rear ends of the submarine. Numerical simulations were performed using the SST k-ω turbulence model to evaluate the impact of these frontal microstructures on drag reduction under varying Reynolds numbers, spacings, and positions, as well as the tail microstructures’ effect at different Reynolds numbers, heights, and circumferential separation angles. The findings reveal that positioning microstructures at the submarine’s head increases the drag reduction rate proportionally with the distance from the apex, displaying an inverse relationship between spacing and drag reduction rate. Conversely, an increase in cone separation angle at the tail leads to a decrease in the overall drag reduction rate. At the same time, an inverse proportionality is observed between cone height and drag reduction rate. This suggests that cone microstructures play a dual role: mitigating friction drag greatly and augmenting pressure drag, thereby achieving overall drag reduction. Moreover, these cone microstructures disrupt eddy currents within the boundary layer surrounding the submarine, restraining the propagation of turbulent momentum transfer in both the head and tail regions. This research not only pioneers a novel drag reduction strategy for underwater vehicles but also sparks new avenues for their optimized surface design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助Mr鹿采纳,获得10
刚刚
AA发布了新的文献求助10
2秒前
千纸鹤完成签到 ,获得积分10
6秒前
舍曲林完成签到,获得积分10
8秒前
bruce-gao完成签到,获得积分10
8秒前
姜落完成签到,获得积分10
8秒前
小张完成签到 ,获得积分10
8秒前
赘婿应助姜落采纳,获得10
11秒前
眯眯眼的山柳完成签到 ,获得积分10
13秒前
可久斯基完成签到 ,获得积分10
15秒前
丘比特应助kerri采纳,获得10
16秒前
武大帝77完成签到 ,获得积分10
16秒前
16秒前
17秒前
xylor完成签到 ,获得积分10
17秒前
傲娇泥猴桃完成签到 ,获得积分10
18秒前
明亮若枫完成签到 ,获得积分10
19秒前
22秒前
26秒前
amber完成签到 ,获得积分10
27秒前
星星又累发布了新的文献求助10
27秒前
斯文的苡完成签到,获得积分10
29秒前
热带蚂蚁完成签到 ,获得积分10
30秒前
王磊完成签到 ,获得积分10
32秒前
renpp822发布了新的文献求助10
37秒前
38秒前
星星又累完成签到,获得积分10
39秒前
Carrots完成签到 ,获得积分10
41秒前
雅思莫拉发布了新的文献求助10
43秒前
49秒前
雅思莫拉完成签到,获得积分20
51秒前
梦见了一只电子猪完成签到 ,获得积分10
53秒前
53秒前
56秒前
平常安发布了新的文献求助10
56秒前
112233445566发布了新的文献求助30
58秒前
淡水痕发布了新的文献求助10
1分钟前
guojingjing完成签到 ,获得积分10
1分钟前
万能图书馆应助FCL采纳,获得30
1分钟前
niubing完成签到,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133798
求助须知:如何正确求助?哪些是违规求助? 2784777
关于积分的说明 7768435
捐赠科研通 2440073
什么是DOI,文献DOI怎么找? 1297175
科研通“疑难数据库(出版商)”最低求助积分说明 624888
版权声明 600791