Two-stage short-term wind power probabilistic prediction using natural gradient boosting combined with neural network

梯度升压 概率逻辑 计算机科学 人工神经网络 均方误差 Boosting(机器学习) 预测区间 风力发电 概率预测 风速 概率神经网络 统计模型 统计 人工智能 机器学习 数学 随机森林 气象学 工程类 物理 时滞神经网络 电气工程
作者
Siyi Zhang,Mingbo Liu,Min Xie,Shunjiang Lin
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:159: 111669-111669
标识
DOI:10.1016/j.asoc.2024.111669
摘要

Accurate wind power probabilistic prediction reflects the uncertainty information of wind power generation, which is the foundation for optimal scheduling of power systems. This study proposes a two-stage probabilistic prediction model combining natural gradient boosting and neural network for accurate uncertainty estimation of short-term output in a wind farm. In the first stage, the selected input features containing historical and future information are fed into a neural network for representation learning. In the second stage, the extracted abstract features are concatenated with the original features, and a natural gradient boosting model is employed to acquire short-term probabilistic forecasts. The experimental results using data from two real wind farms indicate that the proposed hybrid model can generate accurate, sharp, and reliable forecasts. After performing the successive day-ahead prediction task for a month in the first wind farm, the average root mean square error and mean absolute error of the proposed model in the point prediction were 0.1330 and 0.1070, respectively, which were 6.21%–57.29% and 2.96%–62.03% lower than those of comparative models. In addition, the model's forecasting probability density curves demonstrate high reliability; its coverage probability and the mean width percentage of the interval prediction results under the 90% confidence level were 0.9094 and 0.3696, respectively, which were more suitable than those of five other probabilistic prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净士晋完成签到,获得积分10
刚刚
高贵逍遥完成签到 ,获得积分10
刚刚
YMAO完成签到,获得积分20
1秒前
FashionBoy应助柒_l采纳,获得10
1秒前
充电宝应助沉默寻凝采纳,获得20
1秒前
1秒前
跳跃凡桃发布了新的文献求助10
1秒前
haku完成签到,获得积分10
2秒前
2秒前
2秒前
xzyin完成签到,获得积分10
2秒前
BLLL发布了新的文献求助10
2秒前
star完成签到,获得积分20
3秒前
bingsu108完成签到,获得积分10
3秒前
Hello应助温迪采纳,获得10
4秒前
JamesPei应助balabala采纳,获得30
4秒前
YMAO发布了新的文献求助10
6秒前
科研小白包完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
Abi发布了新的文献求助10
7秒前
可爱的函函应助zzw采纳,获得10
7秒前
8秒前
8秒前
念安完成签到,获得积分10
8秒前
potatozhou发布了新的文献求助10
9秒前
9秒前
9秒前
所所应助柏123采纳,获得10
10秒前
10秒前
Owen应助star采纳,获得10
11秒前
坚定青柏发布了新的文献求助10
11秒前
12秒前
赘婿应助自然青亦采纳,获得10
12秒前
学习吧澧发布了新的文献求助10
13秒前
另一种感觉完成签到,获得积分10
13秒前
研友_nxGqeL完成签到 ,获得积分10
13秒前
14秒前
Jackie完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246