Chinese Visceral Adiposity Index Predict Prehypertension Progression and Regression: A Prospective Cohort Study Involving Middle-Aged and Older Adults

高血压前期 医学 逻辑回归 入射(几何) 内科学 血压 前瞻性队列研究 队列研究 人口学 物理 社会学 光学
作者
Senjie Dai,Yang Yang,Dongying Wang
出处
期刊:American Journal of Hypertension [Oxford University Press]
卷期号:37 (8): 588-596 被引量:2
标识
DOI:10.1093/ajh/hpae041
摘要

Abstract BACKGROUND Limited data are published on the relationship of the Chinese visceral adiposity index (CVAI) with prehypertension progression or regression. Therefore, we investigated this association through the China Health and Retirement Longitudinal Study. METHODS Participants with prehypertension were assigned to two groups according to baseline CVAI, and after 4 years of follow-up, their blood pressure was analyzed for deterioration or improvement. We constructed logistic regression models for assessing the association of CVAI with the progression or regression of prehypertension. A restricted cubic spline (RCS) model was utilized for determining the dose–response association. Subgroup analysis and sensitivity analysis were also conducted. RESULTS The study included 2,057 participants with prehypertension. During the follow-up, 695 participants progressed to hypertension, 561 participants regressed to normotension, and 801 participants remained as prehypertensive. An association was observed between a high CVAI value and a higher incidence of progression to hypertension and between a high CVAI value and a lower incidence of regression to normotension (OR = 1.66 and 0.58, 95% CI: 1.35–2.05 and 0.47–0.73, respectively). The RCS model exhibited a linear association between CVAI and prehypertension progression and regression (all P for non-linear > 0.05). The results of the subgroup and sensitivity analyses agreed with those of the primary analysis. CONCLUSIONS A significant association was noted between CVAI and prehypertension progression and regression. Thus, as part of the hypertension prevention strategy, monitoring CVAI is crucial in individuals with prehypertension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
泊声发布了新的文献求助20
刚刚
narthon完成签到 ,获得积分10
刚刚
梦幻完成签到,获得积分10
刚刚
1604531786完成签到,获得积分10
刚刚
研友_LMNjkn发布了新的文献求助10
1秒前
xiao发布了新的文献求助10
1秒前
ww发布了新的文献求助10
1秒前
2秒前
Olsters发布了新的文献求助10
2秒前
深情安青应助该睡觉啦采纳,获得10
2秒前
2秒前
SEV完成签到,获得积分20
2秒前
愉快迎荷完成签到,获得积分10
3秒前
矮小的聪展完成签到,获得积分10
4秒前
factor完成签到,获得积分10
4秒前
Hello应助李来仪采纳,获得10
5秒前
SEV发布了新的文献求助10
5秒前
5秒前
5秒前
坚强亦丝应助隐形机器猫采纳,获得10
6秒前
小马甲应助SCI采纳,获得10
7秒前
老疯智发布了新的文献求助10
7秒前
sweetbearm应助通~采纳,获得10
7秒前
神凰完成签到,获得积分10
7秒前
Z小姐发布了新的文献求助10
8秒前
NexusExplorer应助白泽采纳,获得10
8秒前
9秒前
9秒前
火星上妙梦完成签到 ,获得积分10
9秒前
赘婿应助mayungui采纳,获得10
9秒前
贾不可发布了新的文献求助10
10秒前
英俊梦槐发布了新的文献求助30
10秒前
Xu完成签到,获得积分10
11秒前
11秒前
秀丽千山完成签到,获得积分10
11秒前
12秒前
13秒前
哈哈哈哈完成签到,获得积分10
13秒前
沧海泪发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794