Research on Garbage Recognition of Road Cleaning Vehicle Based on Improved YOLOv5 Algorithm

垃圾 计算机科学 汽车工程 人工智能 算法 工程类 程序设计语言
作者
XinHong Liu,Zihao Wen,Kailei Kang,Xingchen Liu
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2003
摘要

<div class="section abstract"><div class="htmlview paragraph">As a key tool to maintain urban cleanliness and improve the road environment, road cleaning vehicles play an important role in improving the quality of life of residents. However, the traditional road cleaning vehicle requires the driver to monitor the situation of road garbage at all times and manually operate the cleaning process, resulting in an increase in the driver 's work intensity. To solve this problem, this paper proposes a road garbage recognition algorithm based on improved YOLOv5, which aims to reduce labor consumption and improve the efficiency of road cleaning. Firstly, the lightweight network MobileNet-V3 is used to replace the backbone feature extraction network of the YOLOv5 model. The number of parameters and computational complexity of the model are greatly reduced by replacing the standard convolution with the deep separable convolution, which enabled the model to have faster reasoning speed while maintaining higher accuracy. Secondly, the attention mechanism in MobileNet-V3 is improved, and a more efficient coordinate attention module is embedded to enhance the model 's attention to key features and further improve the accuracy of garbage recognition. Thirdly, in order to better improve the detection effect of garbage recognition, the K-means clustering algorithm is used to adjust and re-cluster the anchor box of the original model, so that the generated anchor box is closer to the ground truth box.Finally, we conducted experiments on the self-made road garbage dataset to verify the effectiveness of the improved algorithm. The garbage recognition accuracy rate reached 94.1%, and compared with the original YOLOv5 model, the number of model parameters was reduced by 47.1%, and the detection speed was increased by 35%. Therefore, the improved algorithm achieves the balance between detection accuracy and speed, which lays a foundation for future deployment and testing in actual road cleaning vehicles.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tuzi完成签到,获得积分10
2秒前
鲤鱼灵阳完成签到,获得积分10
3秒前
曼曼来完成签到,获得积分10
3秒前
Mr.Su完成签到 ,获得积分10
4秒前
yuncong323完成签到,获得积分10
5秒前
5秒前
月光族完成签到,获得积分10
6秒前
7秒前
deanna完成签到,获得积分10
7秒前
南国完成签到,获得积分10
7秒前
nature完成签到,获得积分10
8秒前
peekaboo完成签到,获得积分10
8秒前
zqlxueli完成签到 ,获得积分10
9秒前
阿郎二号完成签到 ,获得积分10
10秒前
吉以寒完成签到,获得积分10
10秒前
deanna发布了新的文献求助10
11秒前
烤鸭完成签到 ,获得积分10
12秒前
peekaboo发布了新的文献求助10
12秒前
乐观的从云完成签到,获得积分10
13秒前
liangguangyuan完成签到 ,获得积分10
16秒前
123完成签到,获得积分10
16秒前
Chloe完成签到 ,获得积分10
16秒前
迪迦奥特曼完成签到,获得积分10
16秒前
坚强香旋完成签到,获得积分10
18秒前
筱悠发布了新的文献求助10
18秒前
天天呼的海角完成签到,获得积分10
18秒前
hao发布了新的文献求助10
20秒前
李兴完成签到 ,获得积分10
22秒前
ri_290完成签到,获得积分10
22秒前
友好的牛排完成签到,获得积分10
23秒前
23秒前
慕青应助希特勒采纳,获得10
23秒前
球宝完成签到,获得积分10
23秒前
Yang22完成签到,获得积分10
24秒前
阿郎完成签到 ,获得积分10
24秒前
英姑应助科研通管家采纳,获得10
26秒前
传奇3应助科研通管家采纳,获得20
26秒前
脑洞疼应助科研通管家采纳,获得10
26秒前
Jan完成签到,获得积分10
26秒前
hao完成签到,获得积分10
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798221
关于积分的说明 7827159
捐赠科研通 2454808
什么是DOI,文献DOI怎么找? 1306480
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565