Research on Garbage Recognition of Road Cleaning Vehicle Based on Improved YOLOv5 Algorithm

垃圾 计算机科学 汽车工程 人工智能 算法 工程类 程序设计语言
作者
XinHong Liu,Zihao Wen,Kailei Kang,Xingchen Liu
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2003
摘要

<div class="section abstract"><div class="htmlview paragraph">As a key tool to maintain urban cleanliness and improve the road environment, road cleaning vehicles play an important role in improving the quality of life of residents. However, the traditional road cleaning vehicle requires the driver to monitor the situation of road garbage at all times and manually operate the cleaning process, resulting in an increase in the driver 's work intensity. To solve this problem, this paper proposes a road garbage recognition algorithm based on improved YOLOv5, which aims to reduce labor consumption and improve the efficiency of road cleaning. Firstly, the lightweight network MobileNet-V3 is used to replace the backbone feature extraction network of the YOLOv5 model. The number of parameters and computational complexity of the model are greatly reduced by replacing the standard convolution with the deep separable convolution, which enabled the model to have faster reasoning speed while maintaining higher accuracy. Secondly, the attention mechanism in MobileNet-V3 is improved, and a more efficient coordinate attention module is embedded to enhance the model 's attention to key features and further improve the accuracy of garbage recognition. Thirdly, in order to better improve the detection effect of garbage recognition, the K-means clustering algorithm is used to adjust and re-cluster the anchor box of the original model, so that the generated anchor box is closer to the ground truth box.Finally, we conducted experiments on the self-made road garbage dataset to verify the effectiveness of the improved algorithm. The garbage recognition accuracy rate reached 94.1%, and compared with the original YOLOv5 model, the number of model parameters was reduced by 47.1%, and the detection speed was increased by 35%. Therefore, the improved algorithm achieves the balance between detection accuracy and speed, which lays a foundation for future deployment and testing in actual road cleaning vehicles.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难过的慕青完成签到,获得积分10
刚刚
2秒前
2秒前
2秒前
3秒前
无花果应助sunzhiyu233采纳,获得10
3秒前
韭黄完成签到,获得积分20
3秒前
4秒前
诚c发布了新的文献求助10
4秒前
自然秋柳完成签到 ,获得积分10
4秒前
我是老大应助经法采纳,获得10
4秒前
默默的皮牙子应助经法采纳,获得10
4秒前
orixero应助经法采纳,获得10
4秒前
小马甲应助经法采纳,获得10
4秒前
柚子成精应助经法采纳,获得10
5秒前
小蘑菇应助经法采纳,获得10
5秒前
深情安青应助经法采纳,获得10
5秒前
李爱国应助经法采纳,获得10
5秒前
共享精神应助经法采纳,获得10
5秒前
yyyyyy完成签到 ,获得积分10
5秒前
LL完成签到,获得积分10
5秒前
ziyiziyi发布了新的文献求助10
6秒前
哈哈哈haha发布了新的文献求助40
6秒前
6秒前
啵乐乐完成签到,获得积分10
7秒前
哈哈完成签到,获得积分20
7秒前
8秒前
logic完成签到,获得积分10
8秒前
岁月轮回发布了新的文献求助10
8秒前
小离发布了新的文献求助10
8秒前
CodeCraft应助艺玲采纳,获得10
8秒前
chenjyuu完成签到,获得积分10
9秒前
韭黄发布了新的文献求助10
9秒前
9秒前
子车雁开完成签到,获得积分10
9秒前
10秒前
10秒前
故意的傲玉应助经法采纳,获得10
11秒前
上官若男应助经法采纳,获得10
11秒前
buno应助经法采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759