Research on Garbage Recognition of Road Cleaning Vehicle Based on Improved YOLOv5 Algorithm

垃圾 计算机科学 汽车工程 人工智能 算法 工程类 程序设计语言
作者
XinHong Liu,Zihao Wen,Kailei Kang,Xingchen Liu
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2003
摘要

<div class="section abstract"><div class="htmlview paragraph">As a key tool to maintain urban cleanliness and improve the road environment, road cleaning vehicles play an important role in improving the quality of life of residents. However, the traditional road cleaning vehicle requires the driver to monitor the situation of road garbage at all times and manually operate the cleaning process, resulting in an increase in the driver 's work intensity. To solve this problem, this paper proposes a road garbage recognition algorithm based on improved YOLOv5, which aims to reduce labor consumption and improve the efficiency of road cleaning. Firstly, the lightweight network MobileNet-V3 is used to replace the backbone feature extraction network of the YOLOv5 model. The number of parameters and computational complexity of the model are greatly reduced by replacing the standard convolution with the deep separable convolution, which enabled the model to have faster reasoning speed while maintaining higher accuracy. Secondly, the attention mechanism in MobileNet-V3 is improved, and a more efficient coordinate attention module is embedded to enhance the model 's attention to key features and further improve the accuracy of garbage recognition. Thirdly, in order to better improve the detection effect of garbage recognition, the K-means clustering algorithm is used to adjust and re-cluster the anchor box of the original model, so that the generated anchor box is closer to the ground truth box.Finally, we conducted experiments on the self-made road garbage dataset to verify the effectiveness of the improved algorithm. The garbage recognition accuracy rate reached 94.1%, and compared with the original YOLOv5 model, the number of model parameters was reduced by 47.1%, and the detection speed was increased by 35%. Therefore, the improved algorithm achieves the balance between detection accuracy and speed, which lays a foundation for future deployment and testing in actual road cleaning vehicles.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
桐桐应助方大采纳,获得10
2秒前
3秒前
Estella完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
汉堡包应助坤坤大白采纳,获得10
9秒前
9秒前
知画春秋完成签到 ,获得积分10
10秒前
齐天大圣完成签到,获得积分10
12秒前
LIU发布了新的文献求助10
12秒前
12秒前
华仔应助优美晓灵采纳,获得10
13秒前
P88JNG发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
16秒前
感动的嚓茶完成签到,获得积分10
16秒前
害怕的过客完成签到,获得积分10
18秒前
可爱的函函应助周涨杰采纳,获得100
18秒前
希望天下0贩的0应助77采纳,获得10
19秒前
19秒前
852应助忧郁凌波采纳,获得10
19秒前
李爱国应助21世纪活化石采纳,获得10
20秒前
orixero应助江夏采纳,获得10
20秒前
甘愿发布了新的文献求助10
20秒前
方大发布了新的文献求助10
20秒前
Ykesl完成签到,获得积分10
20秒前
aaaaa完成签到,获得积分10
21秒前
22秒前
霸气的慕青完成签到,获得积分20
22秒前
25秒前
27秒前
章德仁发布了新的文献求助10
27秒前
方大完成签到,获得积分10
27秒前
XT完成签到 ,获得积分10
27秒前
nz完成签到,获得积分10
29秒前
Lucas应助调皮帆布鞋采纳,获得10
29秒前
霸气的慕青关注了科研通微信公众号
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457902
求助须知:如何正确求助?哪些是违规求助? 4564070
关于积分的说明 14293488
捐赠科研通 4488860
什么是DOI,文献DOI怎么找? 2458773
邀请新用户注册赠送积分活动 1448706
关于科研通互助平台的介绍 1424355