清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Research on Garbage Recognition of Road Cleaning Vehicle Based on Improved YOLOv5 Algorithm

垃圾 计算机科学 汽车工程 人工智能 算法 工程类 程序设计语言
作者
XinHong Liu,Zihao Wen,Kailei Kang,Xingchen Liu
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2003
摘要

<div class="section abstract"><div class="htmlview paragraph">As a key tool to maintain urban cleanliness and improve the road environment, road cleaning vehicles play an important role in improving the quality of life of residents. However, the traditional road cleaning vehicle requires the driver to monitor the situation of road garbage at all times and manually operate the cleaning process, resulting in an increase in the driver 's work intensity. To solve this problem, this paper proposes a road garbage recognition algorithm based on improved YOLOv5, which aims to reduce labor consumption and improve the efficiency of road cleaning. Firstly, the lightweight network MobileNet-V3 is used to replace the backbone feature extraction network of the YOLOv5 model. The number of parameters and computational complexity of the model are greatly reduced by replacing the standard convolution with the deep separable convolution, which enabled the model to have faster reasoning speed while maintaining higher accuracy. Secondly, the attention mechanism in MobileNet-V3 is improved, and a more efficient coordinate attention module is embedded to enhance the model 's attention to key features and further improve the accuracy of garbage recognition. Thirdly, in order to better improve the detection effect of garbage recognition, the K-means clustering algorithm is used to adjust and re-cluster the anchor box of the original model, so that the generated anchor box is closer to the ground truth box.Finally, we conducted experiments on the self-made road garbage dataset to verify the effectiveness of the improved algorithm. The garbage recognition accuracy rate reached 94.1%, and compared with the original YOLOv5 model, the number of model parameters was reduced by 47.1%, and the detection speed was increased by 35%. Therefore, the improved algorithm achieves the balance between detection accuracy and speed, which lays a foundation for future deployment and testing in actual road cleaning vehicles.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小李老博完成签到,获得积分10
20秒前
wfw完成签到,获得积分10
31秒前
归尘应助科研通管家采纳,获得10
32秒前
归尘应助科研通管家采纳,获得10
32秒前
上官枫完成签到 ,获得积分10
33秒前
dreamwalk完成签到 ,获得积分10
42秒前
wwf完成签到,获得积分10
47秒前
Wwang完成签到,获得积分10
1分钟前
1分钟前
borisgugugugu完成签到,获得积分10
1分钟前
我是笨蛋完成签到 ,获得积分10
1分钟前
borisgugugugu发布了新的文献求助10
1分钟前
lorentzh完成签到,获得积分10
1分钟前
田様应助borisgugugugu采纳,获得10
1分钟前
时老完成签到 ,获得积分10
1分钟前
月亮邮递员完成签到 ,获得积分10
1分钟前
Wang完成签到 ,获得积分20
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
寒冷的浩轩完成签到,获得积分10
2分钟前
NINI完成签到 ,获得积分10
2分钟前
2分钟前
邹醉蓝完成签到,获得积分0
3分钟前
SQL完成签到 ,获得积分10
3分钟前
小畅完成签到,获得积分10
3分钟前
CipherSage应助gszy1975采纳,获得10
4分钟前
digger2023完成签到 ,获得积分10
4分钟前
lyj完成签到 ,获得积分10
5分钟前
JJ完成签到 ,获得积分0
5分钟前
5分钟前
Hilary完成签到 ,获得积分10
5分钟前
5分钟前
专注的日记本关注了科研通微信公众号
6分钟前
fishss完成签到 ,获得积分10
6分钟前
dracovu完成签到,获得积分10
6分钟前
vunhan完成签到,获得积分10
6分钟前
Rory完成签到 ,获得积分10
7分钟前
dra7vu完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889770
求助须知:如何正确求助?哪些是违规求助? 4173659
关于积分的说明 12952312
捐赠科研通 3935153
什么是DOI,文献DOI怎么找? 2159276
邀请新用户注册赠送积分活动 1177585
关于科研通互助平台的介绍 1082596