Research on Garbage Recognition of Road Cleaning Vehicle Based on Improved YOLOv5 Algorithm

垃圾 计算机科学 汽车工程 人工智能 算法 工程类 程序设计语言
作者
XinHong Liu,Zihao Wen,Kailei Kang,Xingchen Liu
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2003
摘要

<div class="section abstract"><div class="htmlview paragraph">As a key tool to maintain urban cleanliness and improve the road environment, road cleaning vehicles play an important role in improving the quality of life of residents. However, the traditional road cleaning vehicle requires the driver to monitor the situation of road garbage at all times and manually operate the cleaning process, resulting in an increase in the driver 's work intensity. To solve this problem, this paper proposes a road garbage recognition algorithm based on improved YOLOv5, which aims to reduce labor consumption and improve the efficiency of road cleaning. Firstly, the lightweight network MobileNet-V3 is used to replace the backbone feature extraction network of the YOLOv5 model. The number of parameters and computational complexity of the model are greatly reduced by replacing the standard convolution with the deep separable convolution, which enabled the model to have faster reasoning speed while maintaining higher accuracy. Secondly, the attention mechanism in MobileNet-V3 is improved, and a more efficient coordinate attention module is embedded to enhance the model 's attention to key features and further improve the accuracy of garbage recognition. Thirdly, in order to better improve the detection effect of garbage recognition, the K-means clustering algorithm is used to adjust and re-cluster the anchor box of the original model, so that the generated anchor box is closer to the ground truth box.Finally, we conducted experiments on the self-made road garbage dataset to verify the effectiveness of the improved algorithm. The garbage recognition accuracy rate reached 94.1%, and compared with the original YOLOv5 model, the number of model parameters was reduced by 47.1%, and the detection speed was increased by 35%. Therefore, the improved algorithm achieves the balance between detection accuracy and speed, which lays a foundation for future deployment and testing in actual road cleaning vehicles.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鄂浩轩发布了新的文献求助10
刚刚
1秒前
1秒前
李健的小迷弟应助Eicky采纳,获得10
3秒前
michael发布了新的文献求助10
4秒前
蓝天应助FANG采纳,获得10
4秒前
wujiasheng发布了新的文献求助10
4秒前
烟花应助饱满的沛山采纳,获得10
4秒前
5秒前
chall应助猛男采纳,获得10
5秒前
Lucas应助LDML采纳,获得10
5秒前
刘铠瑜发布了新的文献求助10
6秒前
所所应助稳重妙芹采纳,获得10
7秒前
李健的粉丝团团长应助Azhe采纳,获得10
8秒前
8秒前
pluto应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
9秒前
馍馍完成签到,获得积分20
10秒前
hahaya发布了新的文献求助10
10秒前
10秒前
13秒前
隐形曼青应助柔弱亦寒采纳,获得10
13秒前
开心谷秋完成签到,获得积分10
14秒前
王珂完成签到,获得积分10
14秒前
小雨点Logan完成签到,获得积分10
14秒前
彰化完成签到,获得积分10
15秒前
馍馍发布了新的文献求助10
15秒前
summer发布了新的文献求助10
16秒前
丘比特应助鄂浩轩采纳,获得10
16秒前
Hello应助村霸懒洋洋采纳,获得10
16秒前
糖炒栗子发布了新的文献求助10
16秒前
Eicky发布了新的文献求助10
17秒前
Orange应助捉不到猫的蠢鱼采纳,获得10
20秒前
20秒前
21秒前
21秒前
zhang完成签到,获得积分10
21秒前
zyy完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565885
求助须知:如何正确求助?哪些是违规求助? 4650819
关于积分的说明 14693545
捐赠科研通 4592932
什么是DOI,文献DOI怎么找? 2519798
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463346