Research on Garbage Recognition of Road Cleaning Vehicle Based on Improved YOLOv5 Algorithm

垃圾 计算机科学 汽车工程 人工智能 算法 工程类 程序设计语言
作者
XinHong Liu,Zihao Wen,Kailei Kang,Xingchen Liu
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2003
摘要

<div class="section abstract"><div class="htmlview paragraph">As a key tool to maintain urban cleanliness and improve the road environment, road cleaning vehicles play an important role in improving the quality of life of residents. However, the traditional road cleaning vehicle requires the driver to monitor the situation of road garbage at all times and manually operate the cleaning process, resulting in an increase in the driver 's work intensity. To solve this problem, this paper proposes a road garbage recognition algorithm based on improved YOLOv5, which aims to reduce labor consumption and improve the efficiency of road cleaning. Firstly, the lightweight network MobileNet-V3 is used to replace the backbone feature extraction network of the YOLOv5 model. The number of parameters and computational complexity of the model are greatly reduced by replacing the standard convolution with the deep separable convolution, which enabled the model to have faster reasoning speed while maintaining higher accuracy. Secondly, the attention mechanism in MobileNet-V3 is improved, and a more efficient coordinate attention module is embedded to enhance the model 's attention to key features and further improve the accuracy of garbage recognition. Thirdly, in order to better improve the detection effect of garbage recognition, the K-means clustering algorithm is used to adjust and re-cluster the anchor box of the original model, so that the generated anchor box is closer to the ground truth box.Finally, we conducted experiments on the self-made road garbage dataset to verify the effectiveness of the improved algorithm. The garbage recognition accuracy rate reached 94.1%, and compared with the original YOLOv5 model, the number of model parameters was reduced by 47.1%, and the detection speed was increased by 35%. Therefore, the improved algorithm achieves the balance between detection accuracy and speed, which lays a foundation for future deployment and testing in actual road cleaning vehicles.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蚂蚁飞飞发布了新的文献求助10
刚刚
可爱的函函应助健忘天与采纳,获得10
刚刚
顺心醉蝶完成签到 ,获得积分10
刚刚
Lucas应助zz采纳,获得10
1秒前
sincyking完成签到,获得积分10
1秒前
鲤鱼访天完成签到,获得积分10
2秒前
米米完成签到,获得积分10
2秒前
2秒前
LuckyM发布了新的文献求助10
3秒前
wss发布了新的文献求助10
3秒前
天天快乐应助Zhusy采纳,获得10
3秒前
HJJHJH发布了新的文献求助20
3秒前
123发布了新的文献求助10
3秒前
xzy998应助Yule采纳,获得10
4秒前
4秒前
方又亦发布了新的文献求助10
5秒前
只争朝夕应助Bruce_Wei采纳,获得10
7秒前
7秒前
8秒前
CipherSage应助饼饼采纳,获得10
8秒前
传奇3应助科研小白采纳,获得10
9秒前
9秒前
9秒前
9秒前
符语风完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
杨白秋完成签到,获得积分0
13秒前
科研通AI6应助wss采纳,获得10
13秒前
suicone完成签到,获得积分10
13秒前
wang发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
14秒前
159发布了新的文献求助10
16秒前
16秒前
王鸿鑫发布了新的文献求助10
18秒前
wss完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642291
关于积分的说明 14667488
捐赠科研通 4583725
什么是DOI,文献DOI怎么找? 2514379
邀请新用户注册赠送积分活动 1488727
关于科研通互助平台的介绍 1459336