亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on Garbage Recognition of Road Cleaning Vehicle Based on Improved YOLOv5 Algorithm

垃圾 计算机科学 汽车工程 人工智能 算法 工程类 程序设计语言
作者
XinHong Liu,Zihao Wen,Kailei Kang,Xingchen Liu
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2003
摘要

<div class="section abstract"><div class="htmlview paragraph">As a key tool to maintain urban cleanliness and improve the road environment, road cleaning vehicles play an important role in improving the quality of life of residents. However, the traditional road cleaning vehicle requires the driver to monitor the situation of road garbage at all times and manually operate the cleaning process, resulting in an increase in the driver 's work intensity. To solve this problem, this paper proposes a road garbage recognition algorithm based on improved YOLOv5, which aims to reduce labor consumption and improve the efficiency of road cleaning. Firstly, the lightweight network MobileNet-V3 is used to replace the backbone feature extraction network of the YOLOv5 model. The number of parameters and computational complexity of the model are greatly reduced by replacing the standard convolution with the deep separable convolution, which enabled the model to have faster reasoning speed while maintaining higher accuracy. Secondly, the attention mechanism in MobileNet-V3 is improved, and a more efficient coordinate attention module is embedded to enhance the model 's attention to key features and further improve the accuracy of garbage recognition. Thirdly, in order to better improve the detection effect of garbage recognition, the K-means clustering algorithm is used to adjust and re-cluster the anchor box of the original model, so that the generated anchor box is closer to the ground truth box.Finally, we conducted experiments on the self-made road garbage dataset to verify the effectiveness of the improved algorithm. The garbage recognition accuracy rate reached 94.1%, and compared with the original YOLOv5 model, the number of model parameters was reduced by 47.1%, and the detection speed was increased by 35%. Therefore, the improved algorithm achieves the balance between detection accuracy and speed, which lays a foundation for future deployment and testing in actual road cleaning vehicles.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
秋日思语发布了新的文献求助10
22秒前
张燕完成签到,获得积分10
43秒前
1分钟前
在水一方完成签到 ,获得积分10
1分钟前
秋日思语发布了新的文献求助10
1分钟前
英俊的铭应助热情高跟鞋采纳,获得10
2分钟前
这学真难读下去完成签到,获得积分10
2分钟前
2分钟前
2分钟前
AixLeft完成签到 ,获得积分10
2分钟前
热情高跟鞋完成签到,获得积分10
2分钟前
2分钟前
无花果发布了新的文献求助10
3分钟前
CodeCraft应助cube半肥半瘦采纳,获得10
3分钟前
4分钟前
观众发布了新的文献求助10
4分钟前
Akim应助科研通管家采纳,获得10
4分钟前
斯文败类应助科研通管家采纳,获得10
4分钟前
Yolanda_Xu完成签到 ,获得积分10
4分钟前
星辰大海应助1762120采纳,获得10
4分钟前
orixero应助余馨怡采纳,获得10
5分钟前
5分钟前
田様应助小橘子吃傻子采纳,获得10
5分钟前
1762120发布了新的文献求助10
5分钟前
6分钟前
6分钟前
6分钟前
andrele发布了新的文献求助10
6分钟前
mengran完成签到,获得积分10
7分钟前
赫连山菡完成签到,获得积分10
8分钟前
8分钟前
sobereva完成签到,获得积分10
8分钟前
8分钟前
余馨怡发布了新的文献求助10
8分钟前
sobereva发布了新的文献求助10
9分钟前
芸栖完成签到 ,获得积分10
9分钟前
10分钟前
10分钟前
10分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210860
求助须知:如何正确求助?哪些是违规求助? 4387506
关于积分的说明 13662882
捐赠科研通 4247463
什么是DOI,文献DOI怎么找? 2330295
邀请新用户注册赠送积分活动 1328047
关于科研通互助平台的介绍 1280842