清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Research on Garbage Recognition of Road Cleaning Vehicle Based on Improved YOLOv5 Algorithm

垃圾 计算机科学 汽车工程 人工智能 算法 工程类 程序设计语言
作者
XinHong Liu,Zihao Wen,Kailei Kang,Xingchen Liu
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2003
摘要

<div class="section abstract"><div class="htmlview paragraph">As a key tool to maintain urban cleanliness and improve the road environment, road cleaning vehicles play an important role in improving the quality of life of residents. However, the traditional road cleaning vehicle requires the driver to monitor the situation of road garbage at all times and manually operate the cleaning process, resulting in an increase in the driver 's work intensity. To solve this problem, this paper proposes a road garbage recognition algorithm based on improved YOLOv5, which aims to reduce labor consumption and improve the efficiency of road cleaning. Firstly, the lightweight network MobileNet-V3 is used to replace the backbone feature extraction network of the YOLOv5 model. The number of parameters and computational complexity of the model are greatly reduced by replacing the standard convolution with the deep separable convolution, which enabled the model to have faster reasoning speed while maintaining higher accuracy. Secondly, the attention mechanism in MobileNet-V3 is improved, and a more efficient coordinate attention module is embedded to enhance the model 's attention to key features and further improve the accuracy of garbage recognition. Thirdly, in order to better improve the detection effect of garbage recognition, the K-means clustering algorithm is used to adjust and re-cluster the anchor box of the original model, so that the generated anchor box is closer to the ground truth box.Finally, we conducted experiments on the self-made road garbage dataset to verify the effectiveness of the improved algorithm. The garbage recognition accuracy rate reached 94.1%, and compared with the original YOLOv5 model, the number of model parameters was reduced by 47.1%, and the detection speed was increased by 35%. Therefore, the improved algorithm achieves the balance between detection accuracy and speed, which lays a foundation for future deployment and testing in actual road cleaning vehicles.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王子发布了新的文献求助10
1秒前
zhuosht完成签到 ,获得积分10
9秒前
20秒前
万能图书馆应助难搞哦采纳,获得10
22秒前
华仔应助难搞哦采纳,获得10
22秒前
小蘑菇应助难搞哦采纳,获得10
22秒前
CipherSage应助难搞哦采纳,获得10
22秒前
大个应助难搞哦采纳,获得10
22秒前
慕青应助难搞哦采纳,获得10
22秒前
星辰大海应助难搞哦采纳,获得10
22秒前
搜集达人应助难搞哦采纳,获得100
22秒前
雪山飞龙发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
冷傲凝琴完成签到,获得积分10
29秒前
雪山飞龙完成签到,获得积分10
31秒前
32秒前
橙汁摇一摇完成签到 ,获得积分10
37秒前
49秒前
小鱼女侠发布了新的文献求助10
52秒前
毛毛弟完成签到 ,获得积分10
1分钟前
Lyn完成签到,获得积分10
1分钟前
1分钟前
小鱼女侠发布了新的文献求助10
1分钟前
等等完成签到 ,获得积分10
1分钟前
FIN应助Lyn采纳,获得30
1分钟前
tianshanfeihe完成签到 ,获得积分10
1分钟前
1分钟前
番茄小超人2号完成签到 ,获得积分10
1分钟前
小鱼女侠发布了新的文献求助10
1分钟前
神勇的天问完成签到 ,获得积分10
1分钟前
独特纸飞机完成签到 ,获得积分10
1分钟前
牵绊完成签到 ,获得积分10
1分钟前
葫芦芦芦完成签到 ,获得积分10
1分钟前
DJ_Tokyo完成签到,获得积分0
1分钟前
Dr-Luo完成签到 ,获得积分10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
yana发布了新的文献求助10
2分钟前
2分钟前
TEMPO完成签到 ,获得积分10
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008573
求助须知:如何正确求助?哪些是违规求助? 3548261
关于积分的说明 11298724
捐赠科研通 3282959
什么是DOI,文献DOI怎么找? 1810274
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218