Multiscale spatiotemporal meteorological drought prediction: A deep learning approach

环境科学 气候学 时间尺度 降水 预警系统 预测建模 地形 计算机科学 气象学 机器学习 地理 地质学 生态学 电信 地图学 生物
作者
Jia-Li Zhang,Xiaomeng Huang,Yu-Ze Sun
出处
期刊:Advances in Climate Change Research [KeAi]
卷期号:15 (2): 211-221 被引量:6
标识
DOI:10.1016/j.accre.2024.04.003
摘要

Reliable monitoring and thorough spatiotemporal prediction of meteorological drought are crucial for early warning and decision-making regarding drought-related disasters. The utilisation of multiscale methods is effective for a comprehensive evaluation of drought occurrence and progression, given the complex nature of meteorological drought. Nevertheless, the nonlinear spatiotemporal features of meteorological droughts, influenced by various climatological, physical and environmental factors, pose significant challenges to integrated prediction that considers multiple indicators and time scales. To address these constraints, we introduce an innovative deep learning framework based on the shifted window transformer, designed for executing spatiotemporal prediction of meteorological drought across multiple scales. We formulate four prediction indicators using the standardized precipitation index and the standard precipitation evaporation index as core methods for drought definition using the ERA5 reanalysis dataset. These indicators span time scales of approximately 30 d and one season. Short-term indicators capture more anomalous variations, whereas long-term indicators attain comparatively higher accuracy in predicting future trends. We focus on the East Asian region, notable for its diverse climate conditions and intricate terrains, to validate the model's efficacy in addressing the complexities of nonlinear spatiotemporal prediction. The model's performance is evaluated from diverse spatiotemporal viewpoints, and practical application values are analysed by representative drought events. Experimental results substantiate the effectiveness of our proposed model in providing accurate multiscale predictions and capturing the spatiotemporal evolution characteristics of drought. Each of the four drought indicators accurately delineates specific facets of the meteorological drought trend. Moreover, three representative drought events, namely flash drought, sustained drought and severe drought, underscore the significance of selecting appropriate prediction indicators to effectively denote different types of drought events. This study provides methodological and technological support for using a deep learning approach in meteorological drought prediction. Such findings also demonstrate prediction issues related to natural hazards in regions with scarce observational data, complex topography and diverse microclimate systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助不动脑筋采纳,获得10
1秒前
2秒前
淡然妙松发布了新的文献求助10
4秒前
文武完成签到,获得积分10
4秒前
4秒前
彭于晏应助XUXU采纳,获得10
5秒前
6秒前
YO发布了新的文献求助10
6秒前
7秒前
lyn完成签到,获得积分10
8秒前
8秒前
supershiyi11发布了新的文献求助10
10秒前
11秒前
小尾巴发布了新的文献求助10
12秒前
12秒前
14秒前
潇洒的宛菡完成签到,获得积分10
14秒前
领导范儿应助英俊绝义采纳,获得10
14秒前
15秒前
wer完成签到 ,获得积分10
15秒前
15秒前
15秒前
Hbobo发布了新的文献求助10
16秒前
EvilS完成签到,获得积分10
16秒前
鸣笛应助一一采纳,获得30
16秒前
本尼脸上褶子完成签到 ,获得积分10
17秒前
上官若男应助顺顺顺采纳,获得10
17秒前
上官若男应助wbing采纳,获得10
17秒前
17秒前
18秒前
没耳朵的小仙女完成签到 ,获得积分10
19秒前
阿晨发布了新的文献求助10
19秒前
21秒前
谢佳霖发布了新的文献求助10
22秒前
XUXU发布了新的文献求助10
22秒前
星辰大海应助YO采纳,获得10
22秒前
Chimmy完成签到,获得积分10
23秒前
23秒前
Orange应助ljs采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992711
求助须知:如何正确求助?哪些是违规求助? 3533584
关于积分的说明 11263072
捐赠科研通 3273260
什么是DOI,文献DOI怎么找? 1806018
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809545