Multiscale spatiotemporal meteorological drought prediction: A deep learning approach

环境科学 气候学 时间尺度 降水 预警系统 预测建模 地形 计算机科学 气象学 机器学习 地理 地质学 生态学 电信 地图学 生物
作者
Jia-Li Zhang,Xiaomeng Huang,Yu-Ze Sun
出处
期刊:Advances in Climate Change Research [Elsevier]
卷期号:15 (2): 211-221 被引量:6
标识
DOI:10.1016/j.accre.2024.04.003
摘要

Reliable monitoring and thorough spatiotemporal prediction of meteorological drought are crucial for early warning and decision-making regarding drought-related disasters. The utilisation of multiscale methods is effective for a comprehensive evaluation of drought occurrence and progression, given the complex nature of meteorological drought. Nevertheless, the nonlinear spatiotemporal features of meteorological droughts, influenced by various climatological, physical and environmental factors, pose significant challenges to integrated prediction that considers multiple indicators and time scales. To address these constraints, we introduce an innovative deep learning framework based on the shifted window transformer, designed for executing spatiotemporal prediction of meteorological drought across multiple scales. We formulate four prediction indicators using the standardized precipitation index and the standard precipitation evaporation index as core methods for drought definition using the ERA5 reanalysis dataset. These indicators span time scales of approximately 30 d and one season. Short-term indicators capture more anomalous variations, whereas long-term indicators attain comparatively higher accuracy in predicting future trends. We focus on the East Asian region, notable for its diverse climate conditions and intricate terrains, to validate the model's efficacy in addressing the complexities of nonlinear spatiotemporal prediction. The model's performance is evaluated from diverse spatiotemporal viewpoints, and practical application values are analysed by representative drought events. Experimental results substantiate the effectiveness of our proposed model in providing accurate multiscale predictions and capturing the spatiotemporal evolution characteristics of drought. Each of the four drought indicators accurately delineates specific facets of the meteorological drought trend. Moreover, three representative drought events, namely flash drought, sustained drought and severe drought, underscore the significance of selecting appropriate prediction indicators to effectively denote different types of drought events. This study provides methodological and technological support for using a deep learning approach in meteorological drought prediction. Such findings also demonstrate prediction issues related to natural hazards in regions with scarce observational data, complex topography and diverse microclimate systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
moub发布了新的文献求助10
3秒前
酷波er应助cc采纳,获得10
4秒前
4秒前
5秒前
不知道完成签到,获得积分10
5秒前
TanFT发布了新的文献求助10
6秒前
Chataka发布了新的文献求助10
7秒前
8秒前
Orange应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
我是老大应助TanFT采纳,获得10
10秒前
12秒前
落叶解三秋完成签到,获得积分10
16秒前
难过的如花完成签到,获得积分10
17秒前
鸡脖侠完成签到,获得积分10
17秒前
cocolu举报社恐小魏求助涉嫌违规
18秒前
我真的写不完了应助丫丫采纳,获得10
19秒前
20秒前
cc完成签到,获得积分10
21秒前
苯环完成签到,获得积分10
24秒前
cc发布了新的文献求助10
24秒前
moub完成签到,获得积分20
24秒前
Chataka完成签到,获得积分20
25秒前
26秒前
30秒前
33秒前
moshushan520发布了新的文献求助10
35秒前
深情安青应助安详的语蕊采纳,获得10
35秒前
36秒前
有魅力的一笑应助wangting采纳,获得150
37秒前
38秒前
柠檬酸发布了新的文献求助10
39秒前
39秒前
友好醉波完成签到,获得积分10
42秒前
applewinwin发布了新的文献求助10
42秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Wanddickenabhängiges Bruchzähigkeitsverhalten und Schädigungsentwicklung in einer Großgusskomponente aus EN-GJS-600-3 1000
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3342380
求助须知:如何正确求助?哪些是违规求助? 2969541
关于积分的说明 8640186
捐赠科研通 2649526
什么是DOI,文献DOI怎么找? 1450754
科研通“疑难数据库(出版商)”最低求助积分说明 671964
邀请新用户注册赠送积分活动 661195