Multiscale spatiotemporal meteorological drought prediction: A deep learning approach

环境科学 气候学 时间尺度 降水 预警系统 预测建模 地形 计算机科学 气象学 机器学习 地理 地质学 生态学 电信 地图学 生物
作者
Jia-Li Zhang,Xiaomeng Huang,Yu-Ze Sun
出处
期刊:Advances in Climate Change Research [KeAi]
卷期号:15 (2): 211-221 被引量:6
标识
DOI:10.1016/j.accre.2024.04.003
摘要

Reliable monitoring and thorough spatiotemporal prediction of meteorological drought are crucial for early warning and decision-making regarding drought-related disasters. The utilisation of multiscale methods is effective for a comprehensive evaluation of drought occurrence and progression, given the complex nature of meteorological drought. Nevertheless, the nonlinear spatiotemporal features of meteorological droughts, influenced by various climatological, physical and environmental factors, pose significant challenges to integrated prediction that considers multiple indicators and time scales. To address these constraints, we introduce an innovative deep learning framework based on the shifted window transformer, designed for executing spatiotemporal prediction of meteorological drought across multiple scales. We formulate four prediction indicators using the standardized precipitation index and the standard precipitation evaporation index as core methods for drought definition using the ERA5 reanalysis dataset. These indicators span time scales of approximately 30 d and one season. Short-term indicators capture more anomalous variations, whereas long-term indicators attain comparatively higher accuracy in predicting future trends. We focus on the East Asian region, notable for its diverse climate conditions and intricate terrains, to validate the model's efficacy in addressing the complexities of nonlinear spatiotemporal prediction. The model's performance is evaluated from diverse spatiotemporal viewpoints, and practical application values are analysed by representative drought events. Experimental results substantiate the effectiveness of our proposed model in providing accurate multiscale predictions and capturing the spatiotemporal evolution characteristics of drought. Each of the four drought indicators accurately delineates specific facets of the meteorological drought trend. Moreover, three representative drought events, namely flash drought, sustained drought and severe drought, underscore the significance of selecting appropriate prediction indicators to effectively denote different types of drought events. This study provides methodological and technological support for using a deep learning approach in meteorological drought prediction. Such findings also demonstrate prediction issues related to natural hazards in regions with scarce observational data, complex topography and diverse microclimate systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斑马兽完成签到,获得积分10
刚刚
ghost举报sns八丘求助涉嫌违规
1秒前
善学以致用应助weiweiwei采纳,获得10
1秒前
简化为完成签到,获得积分10
2秒前
2秒前
zhn0607发布了新的文献求助10
2秒前
犹豫的君浩完成签到 ,获得积分10
2秒前
alyza发布了新的文献求助10
2秒前
bkagyin应助西西弗斯玩石头采纳,获得10
2秒前
天天快乐应助太阳采纳,获得10
2秒前
3秒前
uu完成签到,获得积分10
3秒前
3秒前
耿昭完成签到,获得积分10
3秒前
Ceaser完成签到,获得积分10
3秒前
科目三应助PangXidan采纳,获得10
3秒前
stst完成签到,获得积分10
3秒前
BulingQAQ完成签到,获得积分10
4秒前
yznfly应助SG采纳,获得50
4秒前
4秒前
爱听歌小馒头完成签到,获得积分10
4秒前
风中冰香应助肯瑞恩哭哭采纳,获得10
4秒前
会飞的猪qq完成签到,获得积分10
5秒前
123jopop完成签到,获得积分10
5秒前
天天快乐应助Magicbunny采纳,获得10
5秒前
heaven完成签到,获得积分10
5秒前
5秒前
zhen9203发布了新的文献求助20
5秒前
无脚鸟完成签到,获得积分10
6秒前
6秒前
陶醉寒珊发布了新的文献求助10
6秒前
炸毛可乐完成签到,获得积分20
6秒前
王会跑完成签到,获得积分10
6秒前
专注鼠标完成签到,获得积分10
6秒前
7秒前
Loooong发布了新的文献求助10
7秒前
7秒前
xiaosu完成签到,获得积分20
7秒前
学术蝗虫2726完成签到,获得积分10
7秒前
玉玉鼠发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257403
求助须知:如何正确求助?哪些是违规求助? 4419507
关于积分的说明 13756551
捐赠科研通 4292770
什么是DOI,文献DOI怎么找? 2355654
邀请新用户注册赠送积分活动 1352106
关于科研通互助平台的介绍 1312849