Constructing fast dual pathways for electron transferring and ions intercalating is an effective solution to develop outstanding electrode materials with high capacity and long cycle stability. Herein, dual-phase engineering was proposed to design a leaf-like hierarchical structure comprising Ni3S2 nanowires and NiCo-MOF nanosheets, in which the semiconductive Ni3S2 nanowires could serve as electron transferring pathways and organic ligands in NiCo-MOF enlarged ions intercalating channels. The Ni3S2/NiCo-MOF nanocomposites as cathode materials for alkaline batteries performed 255 mAh g−1 at 1 A·g−1. Notably, a full battery with Ni3S2/NiCo-MOF cathode and Fe2O3 anode had a reversible capacity of 215 mAh·g−1 at 2 A·g−1, retained 62.3 % at 8 A·g−1. After 2000 charge/discharge cycles, the initial capacity remained 82 %. Moreover, the highest energy density and power density achieved 129 Wh kg−1 and 5.2 kW kg−1, respectively. This dual-phase engineering boosted intercalating kinetics by constructing speedy ion/electron dual pathways, thereby offering an avenue for designing more robust energy storage systems.