支持向量机
随机森林
计算机科学
过度拟合
机器学习
过采样
分类器(UML)
人工智能
热点(地质)
人工神经网络
数据挖掘
试验装置
模式识别(心理学)
计算机网络
带宽(计算)
地球物理学
地质学
作者
Lianci Tao,Tong Zhou,Zhixiang Wu,Fangrui Hu,Shuang Yang,Xiaotian Kong,Chunhua Li
标识
DOI:10.1021/acs.jcim.3c02011
摘要
Protein-DNA interactions are pivotal to various cellular processes. Precise identification of the hotspot residues for protein-DNA interactions holds great significance for revealing the intricate mechanisms in protein-DNA recognition and for providing essential guidance for protein engineering. Aiming at protein-DNA interaction hotspots, this work introduces an effective prediction method, ESPDHot based on a stacked ensemble machine learning framework. Here, the interface residue whose mutation leads to a binding free energy change (ΔΔ
科研通智能强力驱动
Strongly Powered by AbleSci AI