MSWAGAN: Multispectral Remote Sensing Image Super-Resolution Based on Multiscale Window Attention Transformer

遥感 窗口(计算) 图像分辨率 超分辨率 计算机科学 比例(比率) 计算机视觉 人工智能 地质学 图像(数学) 地理 地图学 操作系统
作者
Chunyang Wang,Xian Zhang,Wei Yang,Gai‐Ge Wang,Xingwang Li,Jianlong Wang,Bibo Lu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:9
标识
DOI:10.1109/tgrs.2024.3385752
摘要

Remote Sensing Image Super-Resolution (RSISR) techniques play a crucial role in various remote sensing applications. However, deep learning-based methods applied to RSISR encounter difficulties in learning complex features of remote sensing images and modeling long-term correlations between pixels. This study proposes a Multi-Scale Sliding Window Attention Generation Adversarial Network (MSWAGAN) , which combines the advantages of Convolutional Neural Networks (CNN) and Transformers to overcome these limitations. The MSWAGAN consists of three main parts. In the shallow feature extraction part, CNN is used to extract shallow features from remote sensing images. The deep feature extraction part is divided into two stages. Firstly, a multi-scale sliding window attention (MSWA) is designed to replace the multi-head attention (MHA) in the Transformer. MSWA can learn local multi-scale complex features of remote sensing images without increasing the number of parameters in MHA. Then, the Transformer is utilized to learn global image features and model the long-range correlations between pixels. The image reconstruction part utilizes sub-pixel convolution for feature upsampling. Furthermore, in order to extend the application of super-resolution remote sensing images, a cross-sensor real multi-spectral RSISR dataset consisting of Landsat-8 (L8) and Sentinel-2 (S2) images was constructed, and a series of experiments to improve the spatial resolution of L8 images from 30m to 10m in B, G, R and Near Infrared (NIR) bands were conducted. Experimental results demonstrate that our method outperforms some of the latest SR methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由语柳给自由语柳的求助进行了留言
刚刚
1秒前
宋小威发布了新的文献求助10
2秒前
3秒前
4秒前
Owen应助洁净的大山采纳,获得10
4秒前
5秒前
木木198022完成签到,获得积分10
5秒前
6秒前
糊涂生活糊涂过完成签到,获得积分10
6秒前
rr完成签到,获得积分10
7秒前
李悟尔发布了新的文献求助10
7秒前
pearlwh1227发布了新的文献求助10
8秒前
8秒前
科研小白完成签到,获得积分10
9秒前
笨笨沛文完成签到,获得积分10
10秒前
Serein发布了新的文献求助10
10秒前
10秒前
复杂的雨寒完成签到,获得积分20
11秒前
郭小宝发布了新的文献求助10
11秒前
12秒前
12秒前
Lucas应助李悟尔采纳,获得50
12秒前
13秒前
13秒前
小麦完成签到,获得积分10
15秒前
红箭烟雨发布了新的文献求助10
15秒前
xkh发布了新的文献求助10
17秒前
XWT发布了新的文献求助10
17秒前
dou发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
Bella完成签到 ,获得积分10
21秒前
玉玉完成签到,获得积分10
22秒前
红箭烟雨完成签到,获得积分10
22秒前
LLLLLJ完成签到,获得积分10
23秒前
A梦完成签到,获得积分10
23秒前
pppy完成签到,获得积分10
23秒前
Gaahung完成签到,获得积分10
25秒前
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979763
求助须知:如何正确求助?哪些是违规求助? 3523767
关于积分的说明 11218570
捐赠科研通 3261233
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879121
科研通“疑难数据库(出版商)”最低求助积分说明 807182