A portable deep-learning-assisted digital single-particle counting biosensing platform for amplification-free nucleic acid detection using a lens-free holography microscope

全息术 生物传感器 镜头(地质) 核酸 显微镜 材料科学 纳米技术 粒子(生态学) 数字全息术 光学 化学 物理 生物 生态学 生物化学
作者
Yang Zhou,Junpeng Zhao,Rui Chen,Peng Lu,Weiqi Zhao,Ruxiang Ma,Ting Xiao,Yongzhen Dong,Wenfu Zheng,Xiaolin Huang,Ben Zhong Tang,Yiping Chen
出处
期刊:Nano Today [Elsevier]
卷期号:56: 102238-102238 被引量:26
标识
DOI:10.1016/j.nantod.2024.102238
摘要

The digital single-particle assay has emerged as a highly promising technology in various detection applications, such as food safety inspection, environmental monitoring, and in vitro diagnosis. Conventional digital assays rely on pre-amplification and expensive equipment, which limits their practical applications to point-of-care testing. Herein, we report a deep-learning-assisted digital single-particle counting biosensing platform for nucleic acid detection without pre-amplification using a portable and low-cost lens-free holography microscope. This device can perceive the number change of signal probes and capture microsphere probe holograms, which is ultra-lightweight (∼ 318 g), and has a low cost (∼ $70) and an ultrawide field of view of 24.396 mm2. The improved YOLOv7-based deep learning algorithm is trained to detect small objects (∼ 10 μm) in high-resolution images with high throughput. As a proof of concept, our strategy has successfully distinguished viable and nonviable Salmonella typhimurium quantitatively with high sensitivity (72 CFU/mL) without pre-amplification using phage-mediated DNA extraction and has been verified in various real samples. It has also been successfully applied to detecting non-nucleic acid targets in real samples, including procalcitonin and chloramphenicol. As a versatile and multi-functional platform, this platform exhibits excellent potential for point-of-care multi-type target detection in resource-limited settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gxj完成签到,获得积分10
1秒前
努力向上的小刘完成签到,获得积分10
1秒前
时尚的冬卉关注了科研通微信公众号
1秒前
v啦啦啦啦完成签到,获得积分10
1秒前
bingsu108完成签到,获得积分20
1秒前
咪路完成签到,获得积分10
1秒前
星辰大海应助不爱吃苹果采纳,获得10
2秒前
lkymxt发布了新的文献求助30
3秒前
牛大锤完成签到,获得积分10
4秒前
多加芝士发布了新的文献求助10
4秒前
4秒前
沐沐发布了新的文献求助10
4秒前
gb完成签到 ,获得积分10
4秒前
WizBLue发布了新的文献求助10
4秒前
4秒前
十六夜彦发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
隐形曼青应助热热采纳,获得10
6秒前
whyren完成签到,获得积分10
6秒前
Dr菜完成签到,获得积分10
6秒前
湖畔望月寒完成签到,获得积分20
6秒前
7秒前
雷小仙儿完成签到,获得积分10
7秒前
7秒前
受伤的怀绿完成签到,获得积分10
7秒前
7秒前
轻易完成签到,获得积分20
8秒前
执着亿先完成签到 ,获得积分10
8秒前
8秒前
science完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
今后应助复杂黑夜采纳,获得10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721