肿瘤微环境
生物化学
生物能学
化学
脂质代谢
癌细胞
乙酰辅酶A羧化酶
T细胞
生物
细胞生物学
线粒体
癌症
丙酮酸羧化酶
癌症研究
肿瘤细胞
免疫学
免疫系统
酶
遗传学
作者
Elizabeth G. Hunt,Katie E. Hurst,Brian Riesenberg,Andrew S. Kennedy,Evelyn J. Gandy,Alex M. Andrews,Coral del Mar Alicea Pauneto,Lauren Ball,E. Diane Wallace,Peng Gao,Jeremy A. Meier,Jonathan S. Serody,Michael F. Coleman,Jessica E. Thaxton
出处
期刊:Cell Metabolism
[Elsevier]
日期:2024-03-14
卷期号:36 (5): 969-983.e10
被引量:11
标识
DOI:10.1016/j.cmet.2024.02.009
摘要
The solid tumor microenvironment (TME) imprints a compromised metabolic state in tumor-infiltrating T cells (TILs), hallmarked by the inability to maintain effective energy synthesis for antitumor function and survival. T cells in the TME must catabolize lipids via mitochondrial fatty acid oxidation (FAO) to supply energy in nutrient stress, and it is established that T cells enriched in FAO are adept at cancer control. However, endogenous TILs and unmodified cellular therapy products fail to sustain bioenergetics in tumors. We reveal that the solid TME imposes perpetual acetyl-coenzyme A (CoA) carboxylase (ACC) activity, invoking lipid biogenesis and storage in TILs that opposes FAO. Using metabolic, lipidomic, and confocal imaging strategies, we find that restricting ACC rewires T cell metabolism, enabling energy maintenance in TME stress. Limiting ACC activity potentiates a gene and phenotypic program indicative of T cell longevity, engendering T cells with increased survival and polyfunctionality, which sustains cancer control.
科研通智能强力驱动
Strongly Powered by AbleSci AI