Automated Growth Rate Measurement of the Facet Surfaces of Single Crystals of the β-Form of l-Glutamic Acid Using Machine Learning Image Processing

面(心理学) 结晶学 图像处理 谷氨酸 化学 计算机科学 材料科学 图像(数学) 人工智能 生物化学 氨基酸 心理学 社会心理学 人格 五大性格特征
作者
Jiang Chen,Cai Y.,Thomas A. Hazlehurst,Thomas P. Ilett,Alexander S. M. Jackson,David Hogg,Kevin J. Roberts
出处
期刊:Crystal Growth & Design [American Chemical Society]
卷期号:24 (8): 3277-3288 被引量:3
标识
DOI:10.1021/acs.cgd.3c01548
摘要

Precision measurement of the growth rate of individual single crystal facets (hkl) represents an important component in the design of industrial crystallization processes. Current approaches for crystal growth measurement using optical microscopy are labor intensive and prone to error. An automated process using state-of-the-art computer vision and machine learning to segment and measure the crystal images is presented. The accuracies and efficiencies of the new crystal sizing approach are evaluated against existing manual and semi-automatic methods, demonstrating equivalent accuracy but over a much shorter time, thereby enabling a more complete kinematic analysis of the overall crystallization process. This is applied to measure in situ the crystal growth rates and through this determining the associated kinetic mechanisms for the crystallization of β-form l-glutamic acid from the solution phase. Growth on the {101} capping faces is consistent with a Birth and Spread mechanism, in agreement with the literature, while the growth rate of the {021} prismatic faces, previously not available in the literature, is consistent with a Burton–Cabrera–Frank screw dislocation mechanism. At a typical supersaturation of σ = 0.78, the growth rate of the {101} capping faces (3.2 × 10–8 m s–1) is found to be 17 times that of the {021} prismatic faces (1.9 × 10–9 m s–1). Both capping and prismatic faces are found to have dead zones in their growth kinetic profiles, with the capping faces (σc = 0.23) being about half that of the prismatic faces (σc = 0.46). The importance of this overall approach as an integral component of the digital design of industrial crystallization processes is highlighted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
QXS驳回了小二郎应助
1秒前
Abi发布了新的文献求助10
2秒前
流年完成签到,获得积分10
2秒前
2秒前
来日可追应助韶安萱采纳,获得10
3秒前
我像风一样自由完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
杨光发布了新的文献求助10
4秒前
贾舒涵发布了新的文献求助10
6秒前
华仔应助Yuxin采纳,获得10
6秒前
buzhinianjiu发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
白胖胖完成签到,获得积分10
8秒前
阿邱发布了新的文献求助10
8秒前
9秒前
keepory86完成签到,获得积分10
9秒前
明理采珊发布了新的文献求助30
9秒前
brazenness发布了新的文献求助10
11秒前
11秒前
华仔应助齐桓采纳,获得10
11秒前
heyaoe发布了新的文献求助10
11秒前
12秒前
check003完成签到,获得积分10
13秒前
科研通AI5应助杨光采纳,获得50
13秒前
桐桐应助123采纳,获得10
13秒前
可爱的函函应助听海采纳,获得10
17秒前
melo发布了新的文献求助10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
XuX完成签到,获得积分10
18秒前
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565965
求助须知:如何正确求助?哪些是违规求助? 3138688
关于积分的说明 9428637
捐赠科研通 2839429
什么是DOI,文献DOI怎么找? 1560725
邀请新用户注册赠送积分活动 729866
科研通“疑难数据库(出版商)”最低求助积分说明 717679