Comparing survival of older ovarian cancer patients treated with neoadjuvant chemotherapy versus primary cytoreductive surgery: Reducing bias through machine learning

医学 危险系数 混淆 共病 内科学 队列 肿瘤科 癌症 卵巢癌 比例危险模型 查尔森共病指数 置信区间
作者
Yongmei Huang,J. Alejandro Rauh‐Hain,Thomas H. McCoy,June Y. Hou,Grace Clarke Hillyer,Jennifer S. Ferris,Dawn L. Hershman,Jason D. Wright,Alexander Melamed
出处
期刊:Gynecologic Oncology [Elsevier BV]
卷期号:186: 9-16 被引量:2
标识
DOI:10.1016/j.ygyno.2024.03.016
摘要

Objective To develop and evaluate a multidimensional comorbidity index (MCI) that identifies ovarian cancer patients at risk of early mortality more accurately than the Charlson Comorbidity Index (CCI) for use in health services research. Methods We utilized SEER-Medicare data to identify patients with stage IIIC and IV ovarian cancer, diagnosed in 2010–2015. We employed partial least squares regression, a supervised machine learning algorithm, to develop the MCI by extracting latent factors that optimally captured the variation in health insurance claims made in the year preceding cancer diagnosis, and 1-year mortality. We assessed the discrimination and calibration of the MCI for 1-year mortality and compared its performance to the commonly-used CCI. Finally, we evaluated the MCI's ability to reduce confounding in the association of neoadjuvant chemotherapy (NACT) and all-cause mortality. Results We included 4723 patients in the development cohort and 933 in the validation cohort. The MCI demonstrated good discrimination for 1-year mortality (c-index: 0.75, 95% CI: 0.72–0.79), while the CCI had poor discrimination (c-index: 0.59, 95% CI: 0.56–0.63). Calibration plots showed better agreement between predicted and observed 1-year mortality risk for the MCI compared with CCI. When comparing all-cause mortality between NACT with primary cytoreductive surgery, NACT was associated with a higher hazard of death (HR: 1.13, 95% CI: 1.04–1.23) after controlling for tumor characteristics, demographic factors, and the CCI. However, when controlling for the MCI instead of the CCI, there was no longer a significant difference (HR: 1.05, 95% CI: 0.96–1.14). Conclusions The MCI outperformed the conventional CCI in predicting 1-year mortality, and reducing confounding due to differences in baseline health status in comparative effectiveness analysis of NACT versus primary surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyy发布了新的文献求助10
刚刚
klmkalf发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
Masaccy完成签到,获得积分10
3秒前
善学以致用应助云鲲采纳,获得10
3秒前
Wff发布了新的文献求助10
4秒前
研友_ngkyGn应助武雨寒采纳,获得10
4秒前
5秒前
微笑的水桃完成签到 ,获得积分10
5秒前
klmkalf完成签到,获得积分10
5秒前
踏实季节发布了新的文献求助50
6秒前
LXJ发布了新的文献求助10
7秒前
7秒前
健壮荠完成签到,获得积分10
7秒前
今后应助wyy采纳,获得10
7秒前
ohbuisgf发布了新的文献求助10
8秒前
8秒前
LBY完成签到,获得积分10
9秒前
三颗板牙发布了新的文献求助10
10秒前
11秒前
LBY发布了新的文献求助10
12秒前
翟总完成签到,获得积分10
13秒前
LXJ完成签到,获得积分20
14秒前
小琦琦发布了新的文献求助10
14秒前
怕黑的静蕾应助碧蓝老虎采纳,获得10
14秒前
强风吹拂完成签到,获得积分20
14秒前
君君发布了新的文献求助10
14秒前
赵剑心发布了新的文献求助30
14秒前
香蕉觅云应助无私的以云采纳,获得10
15秒前
wyy完成签到,获得积分10
15秒前
69应助科研鸟采纳,获得10
16秒前
Xenia完成签到,获得积分10
17秒前
怕黑的静蕾应助陈最采纳,获得10
17秒前
黄辉冯完成签到,获得积分10
18秒前
yznfly应助清脆大树采纳,获得30
19秒前
Min完成签到,获得积分10
21秒前
清光更多关注了科研通微信公众号
21秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512116
关于积分的说明 11161791
捐赠科研通 3246949
什么是DOI,文献DOI怎么找? 1793633
邀请新用户注册赠送积分活动 874509
科研通“疑难数据库(出版商)”最低求助积分说明 804420