亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A PiRNA-disease association model incorporating sequence multi-source information with graph convolutional networks

计算机科学 图形 联想(心理学) 序列(生物学) 计算生物学 理论计算机科学 遗传学 生物 哲学 认识论
作者
Lei Wang,Zhengwei Li,Jing Hu,Leon Wong,Bo-Wei Zhao,Zhu-Hong You
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:157: 111523-111523 被引量:2
标识
DOI:10.1016/j.asoc.2024.111523
摘要

There is growing evidence that PIWI-interacting RNA (piRNA) is widely involved in the proliferation, invasion, and metastasis of malignant tumors, playing an important regulatory role in numerous human physiological and pathological processes. Disease-associated piRNAs are expected to be biomarkers and novel therapeutic targets for early diagnosis and prognosis of malignant tumors. However, most previous computational models did not fully focus on the rich representation ability of multiple sources of information in piRNA sequences, which affected their performance in predicting piRNA-disease associations (PDAs). In this work, we propose a model, iSG-PDA, which combines the multi-source information of piRNA sequences with graph convolutional neural networks to predict potential PDAs. More specifically, we first fuse multi-source information including piRNA sequences and disease semantics to enhance the expressiveness of data, then deeply mine the advanced hidden features of PDA using graph convolutional networks, and finally exploit random forest to accurately determine the associations between piRNAs and diseases. In the golden standard dataset, the proposed model realized a prediction accuracy of 91.96% at the AUC of 0.9184. In ablation experiments and comparisons with other different models, iSG-PDA exhibits strong competitiveness. Moreover, the results of the case study indicate that 17 of the top 20 PDAs in the proposed model predictive score were confirmed. These preliminary results reveal that iSG-PDA is an effective computational method for predicting PDAs and can provide reliable disease candidate piRNAs for biological experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菌儿完成签到,获得积分10
7秒前
菌儿发布了新的文献求助30
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
孙旭完成签到 ,获得积分10
16秒前
27秒前
科研通AI2S应助年糕炸小羊采纳,获得10
30秒前
30秒前
传奇3应助西河采纳,获得10
32秒前
41秒前
阿信发布了新的文献求助10
43秒前
zhouzhou发布了新的文献求助10
47秒前
48秒前
Raunio发布了新的文献求助10
52秒前
orixero应助zhouzhou采纳,获得10
53秒前
Fatalite发布了新的文献求助10
54秒前
CHENG完成签到,获得积分20
55秒前
Benhnhk21完成签到,获得积分10
57秒前
在水一方应助牛牛采纳,获得30
1分钟前
Fatalite完成签到,获得积分10
1分钟前
嗯哼应助宋海洋采纳,获得10
1分钟前
1分钟前
1分钟前
hush发布了新的文献求助10
1分钟前
1分钟前
牛牛发布了新的文献求助30
1分钟前
orixero应助hush采纳,获得10
1分钟前
1分钟前
嗯哼应助牛牛采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
牛牛发布了新的文献求助10
1分钟前
嗯哼应助牛牛采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
李健应助嘻嘻嘻嗨学习采纳,获得10
2分钟前
2分钟前
牛牛发布了新的文献求助10
2分钟前
2分钟前
万能图书馆应助牛牛采纳,获得10
2分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248733
求助须知:如何正确求助?哪些是违规求助? 2892186
关于积分的说明 8270109
捐赠科研通 2560265
什么是DOI,文献DOI怎么找? 1388970
科研通“疑难数据库(出版商)”最低求助积分说明 650927
邀请新用户注册赠送积分活动 627843