细胞生物学
线粒体
mTORC2型
氧化磷酸化
mTORC1型
生物
线粒体分裂
化学
信号转导
PI3K/AKT/mTOR通路
生物化学
作者
Yunke Wang,Hui Qin,Yihua Cai,Xu Chen,Hong Li,Diego E. Montoya–Durango,Chuanlin Ding,Xiao Hu,Julia H. Chariker,Harshini Sarojini,Sufan Chien,Eric C. Rouchka,Huang‐Ge Zhang,Jie Zheng,Fuming Qiu,Jun Yan
出处
期刊:iScience
[Elsevier]
日期:2023-04-10
卷期号:26 (5): 106630-106630
被引量:1
标识
DOI:10.1016/j.isci.2023.106630
摘要
Natural IL-17-producing γδ T cells (γδT17 cells) are unconventional innate-like T cells that undergo functional programming in the fetal thymus. However, the intrinsic metabolic mechanisms of γδT17 cell development remain undefined. Here, we demonstrate that mTORC2, not mTORC1, selectively controls the functional fate commitment of γδT17 cells through regulating transcription factor c-Maf expression. scRNA-seq data suggest that fetal and adult γδT17 cells predominately utilize mitochondrial metabolism. mTORC2 deficiency results in impaired Drp1-mediated mitochondrial fission and mitochondrial dysfunction characterized by mitochondrial membrane potential (ΔΨm) loss, reduced oxidative phosphorylation (OXPHOS), and subsequent ATP depletion. Treatment with the Drp1 inhibitor Mdivi-1 alleviates imiquimod-induced skin inflammation. Reconstitution of intracellular ATP levels by ATP-encapsulated liposome completely rescues γδT17 defect caused by mTORC2 deficiency, revealing the fundamental role of metabolite ATP in γδT17 development. These results provide an in-depth insight into the intrinsic link between the mitochondrial OXPHOS pathway and γδT17 thymic programming and functional acquisition.
科研通智能强力驱动
Strongly Powered by AbleSci AI