CaCo: Attributed Network Anomaly Detection via Canonical Correlation Analysis

相关性 典型相关 计算机科学 异常检测 特征向量 数据挖掘 模式识别(心理学) 嵌入 图形 人工智能 数学 理论计算机科学 几何学
作者
Ruidong Wang,Fengbin Zhang,Xunhua Huang,Chongrui Tian,Liang Xi,Haoyi Fan
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 461-470 被引量:5
标识
DOI:10.1109/tii.2023.3266406
摘要

Capturing the complex interaction between the node attribute and the network structure is important for attributed network embedding and anomaly detection. However, there are few methods to explicitly model the correlation between these two views of the node attribute and the network structure. In this article, we propose an attributed network anomaly detection (CaCo) method based on the canonical correlation analysis, which assumes that there should be a strong correlation between the attribute and structure features of normal nodes, and a weak correlation one between those abnormal nodes, in the attributed networks. Consequently, a joint learning mechanism is designed in CaCo to explicitly measure the correlation between two views in the latent space. Specifically, the backbone of a weight-sharing graph convolutional network is employed to encode the node feature from two views of attribute and structure in the latent space, respectively. Then, a Kullback–Leibler divergence regularization is used to align the distributions of the two views. Finally, the parameters of CaCo are optimized by maximizing the correlation between attribute and structure features of normal nodes in the training phase, and anomalies can be detected by measuring the correlation between two views in the testing phase. Extensive experiments on six real-world datasets demonstrate the effectiveness of the proposed method compared to the state-of-the-art techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI5应助lqh0211采纳,获得10
1秒前
香菜皮蛋完成签到 ,获得积分10
3秒前
田様应助YIWENNN采纳,获得10
3秒前
无法发布了新的文献求助10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
迷路的幻灵关注了科研通微信公众号
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
现代期待发布了新的文献求助10
4秒前
大模型应助科研通管家采纳,获得30
5秒前
华仔应助科研通管家采纳,获得10
5秒前
咕咕咕发布了新的文献求助10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
6秒前
8R60d8应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得20
7秒前
8R60d8应助科研通管家采纳,获得10
7秒前
7秒前
科目三应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
8秒前
禾沐完成签到,获得积分10
8秒前
喵星小天才完成签到 ,获得积分20
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得50
8秒前
慕青应助科研通管家采纳,获得10
8秒前
8秒前
安琦应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741065
求助须知:如何正确求助?哪些是违规求助? 3283833
关于积分的说明 10037107
捐赠科研通 3000659
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427