DEL-Dock: Molecular Docking-Enabled Modeling of DNA-Encoded Libraries

码头 计算机科学 概率逻辑 计算生物学 对接(动物) 蛋白质数据库 人工智能 结合亲和力 数据挖掘 机器学习 蛋白质结构 化学 生物 遗传学 医学 生物化学 受体 护理部
作者
Kirill Shmilovich,Benson Chen,Theofanis Karaletsos,Mohammad M. Sultan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (9): 2719-2727 被引量:4
标识
DOI:10.1021/acs.jcim.2c01608
摘要

DNA-encoded library (DEL) technology has enabled significant advances in hit identification by enabling efficient testing of combinatorially generated molecular libraries. DEL screens measure protein binding affinity though sequencing reads of molecules tagged with unique DNA barcodes that survive a series of selection experiments. Computational models have been deployed to learn the latent binding affinities that are correlated to the sequenced count data; however, this correlation is often obfuscated by various sources of noise introduced in its complicated data-generation process. In order to denoise DEL count data and screen for molecules with good binding affinity, computational models require the correct assumptions in their modeling structure to capture the correct signals underlying the data. Recent advances in DEL models have focused on probabilistic formulations of count data, but existing approaches have thus far been limited to only utilizing 2-D molecule-level representations. We introduce a new paradigm, DEL-Dock, that combines ligand-based descriptors with 3-D spatial information from docked protein-ligand complexes. 3-D spatial information allows our model to learn over the actual binding modality rather than using only structure-based information of the ligand. We show that our model is capable of effectively denoising DEL count data to predict molecule enrichment scores that are better correlated with experimental binding affinity measurements compared to prior works. Moreover, by learning over a collection of docked poses we demonstrate that our model, trained only on DEL data, implicitly learns to perform good docking pose selection without requiring external supervision from expensive-to-source protein crystal structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
勤劳的寄灵完成签到,获得积分10
5秒前
笑笑发布了新的文献求助10
7秒前
8秒前
8秒前
关你Peace完成签到 ,获得积分10
9秒前
JUST发布了新的文献求助10
9秒前
慕青应助林夕采纳,获得10
9秒前
穆青完成签到,获得积分10
9秒前
9秒前
努力搞科研完成签到,获得积分10
11秒前
12秒前
风鱼完成签到 ,获得积分10
12秒前
雪山飞龙发布了新的文献求助10
12秒前
dypdyp应助老程采纳,获得10
13秒前
lm发布了新的文献求助10
13秒前
xiaoshi发布了新的文献求助10
14秒前
Magali发布了新的文献求助30
16秒前
哈哈哈大赞完成签到,获得积分10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
烟花应助科研通管家采纳,获得10
19秒前
威灵仙关注了科研通微信公众号
19秒前
我是老大应助科研通管家采纳,获得10
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
19秒前
19秒前
打打应助南敏株采纳,获得10
20秒前
大个应助诚心的青荷采纳,获得10
20秒前
21秒前
田様应助邢文瑞采纳,获得10
23秒前
23秒前
26秒前
27秒前
29秒前
KKKZ发布了新的文献求助10
29秒前
30秒前
zkl完成签到,获得积分10
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962866
求助须知:如何正确求助?哪些是违规求助? 3508787
关于积分的说明 11143177
捐赠科研通 3241660
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873020
科研通“疑难数据库(出版商)”最低求助积分说明 803577