DEL-Dock: Molecular Docking-Enabled Modeling of DNA-Encoded Libraries

码头 计算机科学 概率逻辑 计算生物学 对接(动物) 蛋白质数据库 人工智能 结合亲和力 数据挖掘 机器学习 蛋白质结构 化学 生物 遗传学 医学 生物化学 受体 护理部
作者
Kirill Shmilovich,Benson Chen,Theofanis Karaletsos,Mohammad M. Sultan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (9): 2719-2727 被引量:4
标识
DOI:10.1021/acs.jcim.2c01608
摘要

DNA-encoded library (DEL) technology has enabled significant advances in hit identification by enabling efficient testing of combinatorially generated molecular libraries. DEL screens measure protein binding affinity though sequencing reads of molecules tagged with unique DNA barcodes that survive a series of selection experiments. Computational models have been deployed to learn the latent binding affinities that are correlated to the sequenced count data; however, this correlation is often obfuscated by various sources of noise introduced in its complicated data-generation process. In order to denoise DEL count data and screen for molecules with good binding affinity, computational models require the correct assumptions in their modeling structure to capture the correct signals underlying the data. Recent advances in DEL models have focused on probabilistic formulations of count data, but existing approaches have thus far been limited to only utilizing 2-D molecule-level representations. We introduce a new paradigm, DEL-Dock, that combines ligand-based descriptors with 3-D spatial information from docked protein-ligand complexes. 3-D spatial information allows our model to learn over the actual binding modality rather than using only structure-based information of the ligand. We show that our model is capable of effectively denoising DEL count data to predict molecule enrichment scores that are better correlated with experimental binding affinity measurements compared to prior works. Moreover, by learning over a collection of docked poses we demonstrate that our model, trained only on DEL data, implicitly learns to perform good docking pose selection without requiring external supervision from expensive-to-source protein crystal structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助研友_n2Q9KL采纳,获得10
1秒前
1秒前
1秒前
123完成签到 ,获得积分10
1秒前
王金金发布了新的文献求助10
2秒前
2秒前
2秒前
qh完成签到,获得积分10
2秒前
3秒前
Ran发布了新的文献求助10
4秒前
5秒前
5秒前
Megan发布了新的文献求助30
5秒前
三哥哥w完成签到,获得积分10
5秒前
小松鼠发布了新的文献求助10
6秒前
叮当应助郑夏岚采纳,获得10
6秒前
YaHe发布了新的文献求助10
7秒前
楚天发布了新的文献求助10
7秒前
佚小满完成签到 ,获得积分10
8秒前
JamesPei应助闫闫采纳,获得10
8秒前
vetXue发布了新的文献求助50
8秒前
风语发布了新的文献求助10
8秒前
杨洁发布了新的文献求助10
9秒前
科研通AI2S应助shitou采纳,获得10
11秒前
ding应助诗篇采纳,获得10
11秒前
小超人哈里完成签到,获得积分10
11秒前
九月关注了科研通微信公众号
12秒前
Lucas应助三哥哥w采纳,获得10
13秒前
13秒前
鲍幻悲完成签到,获得积分20
14秒前
积极慕梅应助xuxu采纳,获得10
15秒前
ChiariRay完成签到,获得积分20
16秒前
17秒前
hmhu发布了新的文献求助10
17秒前
18秒前
风趣的芙发布了新的文献求助10
18秒前
linmu发布了新的文献求助10
18秒前
自觉黎云发布了新的文献求助10
20秒前
自觉雨灵完成签到,获得积分10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146046
求助须知:如何正确求助?哪些是违规求助? 2797450
关于积分的说明 7824222
捐赠科研通 2453810
什么是DOI,文献DOI怎么找? 1305876
科研通“疑难数据库(出版商)”最低求助积分说明 627593
版权声明 601491