DEL-Dock: Molecular Docking-Enabled Modeling of DNA-Encoded Libraries

码头 计算机科学 概率逻辑 计算生物学 对接(动物) 蛋白质数据库 人工智能 结合亲和力 数据挖掘 机器学习 蛋白质结构 化学 生物 遗传学 生物化学 医学 护理部 受体
作者
Kirill Shmilovich,Benson Chen,Theofanis Karaletsos,Mohammad M. Sultan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (9): 2719-2727 被引量:4
标识
DOI:10.1021/acs.jcim.2c01608
摘要

DNA-encoded library (DEL) technology has enabled significant advances in hit identification by enabling efficient testing of combinatorially generated molecular libraries. DEL screens measure protein binding affinity though sequencing reads of molecules tagged with unique DNA barcodes that survive a series of selection experiments. Computational models have been deployed to learn the latent binding affinities that are correlated to the sequenced count data; however, this correlation is often obfuscated by various sources of noise introduced in its complicated data-generation process. In order to denoise DEL count data and screen for molecules with good binding affinity, computational models require the correct assumptions in their modeling structure to capture the correct signals underlying the data. Recent advances in DEL models have focused on probabilistic formulations of count data, but existing approaches have thus far been limited to only utilizing 2-D molecule-level representations. We introduce a new paradigm, DEL-Dock, that combines ligand-based descriptors with 3-D spatial information from docked protein-ligand complexes. 3-D spatial information allows our model to learn over the actual binding modality rather than using only structure-based information of the ligand. We show that our model is capable of effectively denoising DEL count data to predict molecule enrichment scores that are better correlated with experimental binding affinity measurements compared to prior works. Moreover, by learning over a collection of docked poses we demonstrate that our model, trained only on DEL data, implicitly learns to perform good docking pose selection without requiring external supervision from expensive-to-source protein crystal structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助自然的晓亦采纳,获得10
刚刚
1秒前
西乡塘塘主完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
3秒前
诸葛一笑发布了新的文献求助10
3秒前
桂花酒酿完成签到,获得积分10
3秒前
果味叶完成签到,获得积分10
3秒前
Z在发布了新的文献求助10
4秒前
花生发布了新的文献求助10
4秒前
帅气小刺猬完成签到,获得积分10
5秒前
科研通AI6应助自然砖家采纳,获得10
6秒前
一顿鸡米花完成签到,获得积分10
6秒前
Mental完成签到,获得积分10
6秒前
s0x0y0完成签到,获得积分10
7秒前
汪兆艺发布了新的文献求助10
8秒前
8秒前
77seven完成签到,获得积分10
9秒前
9秒前
寻道图强应助灵银采纳,获得30
9秒前
花生完成签到,获得积分10
10秒前
慕青应助诸葛一笑采纳,获得10
10秒前
10秒前
10秒前
建设完成签到,获得积分10
10秒前
dc关注了科研通微信公众号
11秒前
yingxinfu完成签到 ,获得积分10
12秒前
池鱼完成签到 ,获得积分10
13秒前
领导范儿应助遇见飞儿采纳,获得10
13秒前
13秒前
汪兆艺完成签到,获得积分20
14秒前
建设发布了新的文献求助10
14秒前
何必在乎发布了新的文献求助10
15秒前
卷卷应助miles采纳,获得10
15秒前
15秒前
隐形曼青应助波风水门采纳,获得10
16秒前
16秒前
殷勤的幻丝完成签到,获得积分20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589024
求助须知:如何正确求助?哪些是违规求助? 4671817
关于积分的说明 14789701
捐赠科研通 4627219
什么是DOI,文献DOI怎么找? 2532047
邀请新用户注册赠送积分活动 1500655
关于科研通互助平台的介绍 1468382