亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DEL-Dock: Molecular Docking-Enabled Modeling of DNA-Encoded Libraries

码头 计算机科学 概率逻辑 计算生物学 对接(动物) 蛋白质数据库 人工智能 结合亲和力 数据挖掘 机器学习 蛋白质结构 化学 生物 遗传学 医学 生物化学 受体 护理部
作者
Kirill Shmilovich,Benson Chen,Theofanis Karaletsos,Mohammad M. Sultan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (9): 2719-2727 被引量:4
标识
DOI:10.1021/acs.jcim.2c01608
摘要

DNA-encoded library (DEL) technology has enabled significant advances in hit identification by enabling efficient testing of combinatorially generated molecular libraries. DEL screens measure protein binding affinity though sequencing reads of molecules tagged with unique DNA barcodes that survive a series of selection experiments. Computational models have been deployed to learn the latent binding affinities that are correlated to the sequenced count data; however, this correlation is often obfuscated by various sources of noise introduced in its complicated data-generation process. In order to denoise DEL count data and screen for molecules with good binding affinity, computational models require the correct assumptions in their modeling structure to capture the correct signals underlying the data. Recent advances in DEL models have focused on probabilistic formulations of count data, but existing approaches have thus far been limited to only utilizing 2-D molecule-level representations. We introduce a new paradigm, DEL-Dock, that combines ligand-based descriptors with 3-D spatial information from docked protein-ligand complexes. 3-D spatial information allows our model to learn over the actual binding modality rather than using only structure-based information of the ligand. We show that our model is capable of effectively denoising DEL count data to predict molecule enrichment scores that are better correlated with experimental binding affinity measurements compared to prior works. Moreover, by learning over a collection of docked poses we demonstrate that our model, trained only on DEL data, implicitly learns to perform good docking pose selection without requiring external supervision from expensive-to-source protein crystal structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
5秒前
bkagyin应助lezbj99采纳,获得10
9秒前
紧张的以山完成签到,获得积分10
9秒前
Akim应助lezbj99采纳,获得10
43秒前
anqi6688完成签到,获得积分10
56秒前
HUSH完成签到,获得积分10
59秒前
量子星尘发布了新的文献求助10
59秒前
科研通AI5应助anqi6688采纳,获得10
1分钟前
111完成签到 ,获得积分10
1分钟前
科目三应助GPTea采纳,获得10
1分钟前
Augustines完成签到,获得积分10
1分钟前
冷静新烟完成签到,获得积分20
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
Magali应助科研通管家采纳,获得30
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
田様应助科研通管家采纳,获得30
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
清脆的飞丹完成签到,获得积分10
2分钟前
冷静新烟发布了新的文献求助10
2分钟前
Krsky完成签到,获得积分10
2分钟前
浮游应助GPTea采纳,获得10
2分钟前
HUSH发布了新的文献求助20
2分钟前
Hugrainbow完成签到,获得积分10
2分钟前
maher完成签到 ,获得积分10
2分钟前
酷波er应助GPTea采纳,获得10
2分钟前
五四三二一完成签到 ,获得积分10
3分钟前
3分钟前
DPH完成签到 ,获得积分10
3分钟前
冷静新烟发布了新的文献求助10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
曾经沛白完成签到 ,获得积分10
5分钟前
Sinkei发布了新的文献求助10
5分钟前
搞怪冬云发布了新的文献求助10
5分钟前
6分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5116357
求助须知:如何正确求助?哪些是违规求助? 4323015
关于积分的说明 13469810
捐赠科研通 4155310
什么是DOI,文献DOI怎么找? 2277113
邀请新用户注册赠送积分活动 1278970
关于科研通互助平台的介绍 1217011