MemSeg: A semi-supervised method for image surface defect detection using differences and commonalities

计算机科学 人工智能 超平面 任务(项目管理) 模式识别(心理学) 透视图(图形) 推论 分割 图像(数学) 像素 机器学习 几何学 数学 管理 经济
作者
Minghui Yang,Peng Wu,Hui Feng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:119: 105835-105835 被引量:90
标识
DOI:10.1016/j.engappai.2023.105835
摘要

High-accuracy and real-time semi-supervised image surface defect detection is extensively needed in industrial scenarios. However, existing methods do not provide a good balance between accuracy and speed of defect detection, so this paper proposes an end-to-end memory-based segmentation network (MemSeg) to better accomplish this task. Considering the small intra-class variance of products in the same production line, from the perspective of differences and commonalities, MemSeg introduces artificially simulated abnormal samples and memory samples to assist the model learning. In the training phase, MemSeg explicitly learns the potential differences between normal and simulated abnormal images to obtain a robust classification hyperplane. At the same time, inspired by the mechanism of human memory, MemSeg uses a memory pool to store the general patterns of normal samples. By comparing the similarities and differences between input samples and memory samples in the memory pool to give effective guesses about abnormal regions; In the inference phase, MemSeg directly determines the abnormal regions of the input image in an end-to-end approach. Simple but high-performance, MemSeg achieves state-of-the-art (SOTA) performance on MVTec AD datasets with AUC scores of 99.56% and 98.84% at the image level and pixel level, respectively, while also meeting the real-time requirements in industrial scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缘迹完成签到,获得积分20
刚刚
语物完成签到,获得积分10
1秒前
彭于彦祖应助求文献采纳,获得30
1秒前
2秒前
Revovler完成签到,获得积分10
2秒前
科研通AI2S应助儒雅慕灵采纳,获得10
2秒前
xx完成签到,获得积分10
2秒前
bct发布了新的文献求助10
3秒前
清爽代丝发布了新的文献求助10
3秒前
4秒前
璐璐完成签到 ,获得积分10
4秒前
在水一方应助小猪采纳,获得10
5秒前
5秒前
风车完成签到,获得积分10
5秒前
Lucas应助ShiauMo采纳,获得10
5秒前
6秒前
忽然长大完成签到,获得积分10
6秒前
7秒前
LIGHT发布了新的文献求助10
8秒前
隐形曼青应助黑水仙采纳,获得10
8秒前
情怀应助lsjdsdb采纳,获得10
9秒前
LAST完成签到,获得积分10
9秒前
123发布了新的文献求助10
9秒前
9秒前
bct完成签到,获得积分10
10秒前
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得30
10秒前
天天快乐应助宁诺采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
11秒前
打打应助邹葶采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得100
11秒前
慕青应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
11秒前
cocolu应助科研通管家采纳,获得10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305612
求助须知:如何正确求助?哪些是违规求助? 2939343
关于积分的说明 8493224
捐赠科研通 2613787
什么是DOI,文献DOI怎么找? 1427585
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647916