EC-GCN: A encrypted traffic classification framework based on multi-scale graph convolution networks

计算机科学 联营 加密 交通分类 图形 数据挖掘 稳健性(进化) 理论计算机科学 计算机网络 机器学习 人工智能 网络数据包 生物化学 基因 化学
作者
Zulong Diao,Gaogang Xie,Xin Wang,Rui Ren,Xuying Meng,Guangxing Zhang,Xie Kun,Mingyu Qiao
出处
期刊:Computer Networks [Elsevier BV]
卷期号:224: 109614-109614 被引量:12
标识
DOI:10.1016/j.comnet.2023.109614
摘要

The sharp increase in encrypted traffic brings a huge challenge to traditional traffic classification methods. Combining deep learning with time series analysis techniques is a recent trend in solving this problem. Most of these approaches only capture the temporal correlation within a flow. The accuracy and robustness are unsatisfactory, especially in an unstable network environment with high packet loss and reordering. How to learn a representation with a strong generalization ability for each encrypted traffic flow remains a key challenge. Our detailed analysis indicates that there is a graph with particular local structures corresponding to each type of encrypted traffic flow. Inspired by this observation, we propose a novel deep learning framework called EC-GCN to classify encrypted traffic flows based on multi-scale graph convolutional neural networks. We first provide a novel lightweight layer that only relies on the metadata and encodes each encrypted traffic flow into graph representations. So that our framework can be independent of different encryption protocols. Then we design a novel graph pooling and structure learning layer to dynamically extract the multi-graph representations and improve the capabilities to adapt to complex network environments. EC-GCN is an end-to-end classification model that learns representative spatial–temporal traffic features hidden in a traffic time series and then classifies them in a unified framework. Our comprehensive experiments on three real-world datasets indicate that EC-GCN can achieve up to 5%–20% accuracy improvement and outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spp发布了新的文献求助10
1秒前
2秒前
amywang1931完成签到,获得积分10
3秒前
3秒前
5秒前
小狗不是抠脚兵完成签到,获得积分10
5秒前
归途完成签到 ,获得积分10
6秒前
mmr发布了新的文献求助60
6秒前
Orange应助乱武采纳,获得30
6秒前
浔xxx发布了新的文献求助10
7秒前
8秒前
9秒前
11秒前
12秒前
13秒前
14秒前
15秒前
已知中的未知完成签到 ,获得积分10
17秒前
18秒前
斯文觅珍发布了新的文献求助10
18秒前
space完成签到,获得积分10
19秒前
张雷应助科研通管家采纳,获得20
19秒前
科目三应助科研通管家采纳,获得10
19秒前
ED应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
20秒前
Owen应助科研通管家采纳,获得10
20秒前
上官若男应助科研通管家采纳,获得10
20秒前
1111应助科研通管家采纳,获得10
20秒前
YamDaamCaa应助科研通管家采纳,获得30
20秒前
20秒前
20秒前
20秒前
20秒前
小小叶完成签到,获得积分10
21秒前
21秒前
情怀应助火星上鑫鹏采纳,获得10
21秒前
ZAPAR发布了新的文献求助10
22秒前
闪闪静槐关注了科研通微信公众号
23秒前
似水年华完成签到 ,获得积分10
25秒前
安芝完成签到,获得积分10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993454
求助须知:如何正确求助?哪些是违规求助? 3534113
关于积分的说明 11264719
捐赠科研通 3273986
什么是DOI,文献DOI怎么找? 1806200
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662