EC-GCN: A encrypted traffic classification framework based on multi-scale graph convolution networks

计算机科学 联营 加密 交通分类 图形 数据挖掘 稳健性(进化) 理论计算机科学 计算机网络 机器学习 人工智能 网络数据包 生物化学 基因 化学
作者
Zulong Diao,Gaogang Xie,Xin Wang,Rui Ren,Xuying Meng,Guangxing Zhang,Xie Kun,Mingyu Qiao
出处
期刊:Computer Networks [Elsevier]
卷期号:224: 109614-109614 被引量:12
标识
DOI:10.1016/j.comnet.2023.109614
摘要

The sharp increase in encrypted traffic brings a huge challenge to traditional traffic classification methods. Combining deep learning with time series analysis techniques is a recent trend in solving this problem. Most of these approaches only capture the temporal correlation within a flow. The accuracy and robustness are unsatisfactory, especially in an unstable network environment with high packet loss and reordering. How to learn a representation with a strong generalization ability for each encrypted traffic flow remains a key challenge. Our detailed analysis indicates that there is a graph with particular local structures corresponding to each type of encrypted traffic flow. Inspired by this observation, we propose a novel deep learning framework called EC-GCN to classify encrypted traffic flows based on multi-scale graph convolutional neural networks. We first provide a novel lightweight layer that only relies on the metadata and encodes each encrypted traffic flow into graph representations. So that our framework can be independent of different encryption protocols. Then we design a novel graph pooling and structure learning layer to dynamically extract the multi-graph representations and improve the capabilities to adapt to complex network environments. EC-GCN is an end-to-end classification model that learns representative spatial–temporal traffic features hidden in a traffic time series and then classifies them in a unified framework. Our comprehensive experiments on three real-world datasets indicate that EC-GCN can achieve up to 5%–20% accuracy improvement and outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RJL发布了新的文献求助10
刚刚
刚刚
妮子要学习完成签到,获得积分10
刚刚
1秒前
1秒前
米丸子完成签到,获得积分10
1秒前
1秒前
lincsh发布了新的文献求助10
2秒前
斯文的樱发布了新的文献求助10
3秒前
Colin发布了新的文献求助10
3秒前
4秒前
巫马白亦发布了新的文献求助10
4秒前
5秒前
烟花应助Lily采纳,获得10
5秒前
兜兜发布了新的文献求助10
5秒前
welch发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
7秒前
7秒前
yxx完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
在水一方应助King采纳,获得10
9秒前
NexusExplorer应助RJL采纳,获得10
9秒前
柚子发布了新的文献求助10
9秒前
restar23完成签到,获得积分10
9秒前
10秒前
研友_Z72O4n发布了新的文献求助10
11秒前
黑夜发布了新的文献求助10
11秒前
聂学雨发布了新的文献求助10
11秒前
11秒前
汪汪的小可爱完成签到,获得积分10
12秒前
12秒前
kiguf发布了新的文献求助10
12秒前
沈宸完成签到,获得积分10
13秒前
斯文的樱完成签到,获得积分10
13秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135752
求助须知:如何正确求助?哪些是违规求助? 2786595
关于积分的说明 7778521
捐赠科研通 2442742
什么是DOI,文献DOI怎么找? 1298676
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600866