EC-GCN: A encrypted traffic classification framework based on multi-scale graph convolution networks

计算机科学 联营 加密 交通分类 图形 数据挖掘 稳健性(进化) 理论计算机科学 计算机网络 机器学习 人工智能 网络数据包 生物化学 基因 化学
作者
Zulong Diao,Gaogang Xie,Xin Wang,Rui Ren,Xuying Meng,Guangxing Zhang,Xie Kun,Mingyu Qiao
出处
期刊:Computer Networks [Elsevier BV]
卷期号:224: 109614-109614 被引量:29
标识
DOI:10.1016/j.comnet.2023.109614
摘要

The sharp increase in encrypted traffic brings a huge challenge to traditional traffic classification methods. Combining deep learning with time series analysis techniques is a recent trend in solving this problem. Most of these approaches only capture the temporal correlation within a flow. The accuracy and robustness are unsatisfactory, especially in an unstable network environment with high packet loss and reordering. How to learn a representation with a strong generalization ability for each encrypted traffic flow remains a key challenge. Our detailed analysis indicates that there is a graph with particular local structures corresponding to each type of encrypted traffic flow. Inspired by this observation, we propose a novel deep learning framework called EC-GCN to classify encrypted traffic flows based on multi-scale graph convolutional neural networks. We first provide a novel lightweight layer that only relies on the metadata and encodes each encrypted traffic flow into graph representations. So that our framework can be independent of different encryption protocols. Then we design a novel graph pooling and structure learning layer to dynamically extract the multi-graph representations and improve the capabilities to adapt to complex network environments. EC-GCN is an end-to-end classification model that learns representative spatial–temporal traffic features hidden in a traffic time series and then classifies them in a unified framework. Our comprehensive experiments on three real-world datasets indicate that EC-GCN can achieve up to 5%–20% accuracy improvement and outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ss发布了新的文献求助10
刚刚
刚刚
英姑应助苏打采纳,获得10
刚刚
Owen应助Anyemzl采纳,获得10
1秒前
Wang发布了新的文献求助10
1秒前
科研通AI5应助李创业采纳,获得10
1秒前
星期八发布了新的文献求助10
1秒前
1秒前
木木三完成签到,获得积分10
1秒前
Duuuu发布了新的文献求助10
2秒前
红红发布了新的文献求助10
2秒前
3秒前
董菲音完成签到,获得积分10
3秒前
香蕉觅云应助沧海青州采纳,获得10
4秒前
5秒前
Rachel发布了新的文献求助10
5秒前
唠叨的中道完成签到,获得积分10
6秒前
杨俊韬完成签到,获得积分10
6秒前
宣以晴发布了新的文献求助10
7秒前
lilili2580发布了新的文献求助10
8秒前
科研通AI5应助严驰采纳,获得10
8秒前
健康的越彬完成签到,获得积分20
8秒前
小二郎应助石墩子采纳,获得10
8秒前
浮游应助清新的马里奥采纳,获得10
9秒前
ST发布了新的文献求助10
9秒前
12242131发布了新的文献求助10
9秒前
9秒前
XH_L完成签到,获得积分10
10秒前
10秒前
疯狂的冬瓜完成签到,获得积分10
11秒前
11秒前
12秒前
科目三应助hehsk采纳,获得10
12秒前
13秒前
小超完成签到,获得积分10
13秒前
14秒前
14秒前
Owen应助北背玄幻管采纳,获得10
14秒前
英姑应助halosheep采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072862
求助须知:如何正确求助?哪些是违规求助? 4293130
关于积分的说明 13377256
捐赠科研通 4114419
什么是DOI,文献DOI怎么找? 2252964
邀请新用户注册赠送积分活动 1257744
关于科研通互助平台的介绍 1190631