亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EC-GCN: A encrypted traffic classification framework based on multi-scale graph convolution networks

计算机科学 联营 加密 交通分类 图形 数据挖掘 稳健性(进化) 理论计算机科学 计算机网络 机器学习 人工智能 网络数据包 生物化学 基因 化学
作者
Zulong Diao,Gaogang Xie,Xin Wang,Rui Ren,Xuying Meng,Guangxing Zhang,Xie Kun,Mingyu Qiao
出处
期刊:Computer Networks [Elsevier]
卷期号:224: 109614-109614 被引量:44
标识
DOI:10.1016/j.comnet.2023.109614
摘要

The sharp increase in encrypted traffic brings a huge challenge to traditional traffic classification methods. Combining deep learning with time series analysis techniques is a recent trend in solving this problem. Most of these approaches only capture the temporal correlation within a flow. The accuracy and robustness are unsatisfactory, especially in an unstable network environment with high packet loss and reordering. How to learn a representation with a strong generalization ability for each encrypted traffic flow remains a key challenge. Our detailed analysis indicates that there is a graph with particular local structures corresponding to each type of encrypted traffic flow. Inspired by this observation, we propose a novel deep learning framework called EC-GCN to classify encrypted traffic flows based on multi-scale graph convolutional neural networks. We first provide a novel lightweight layer that only relies on the metadata and encodes each encrypted traffic flow into graph representations. So that our framework can be independent of different encryption protocols. Then we design a novel graph pooling and structure learning layer to dynamically extract the multi-graph representations and improve the capabilities to adapt to complex network environments. EC-GCN is an end-to-end classification model that learns representative spatial–temporal traffic features hidden in a traffic time series and then classifies them in a unified framework. Our comprehensive experiments on three real-world datasets indicate that EC-GCN can achieve up to 5%–20% accuracy improvement and outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
矢思然完成签到,获得积分10
6秒前
7秒前
寒冷念文发布了新的文献求助10
8秒前
9秒前
默默完成签到 ,获得积分10
17秒前
bkagyin应助寒冷念文采纳,获得10
17秒前
21秒前
狂野的含烟完成签到 ,获得积分10
23秒前
26秒前
26秒前
30秒前
31秒前
32秒前
ffff完成签到 ,获得积分10
32秒前
畅快甜瓜发布了新的文献求助30
37秒前
华仔应助Omni采纳,获得10
37秒前
yb完成签到,获得积分10
39秒前
44秒前
44秒前
50秒前
ljy完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
星辰大海应助畅快甜瓜采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
weibo完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
大个应助louis采纳,获得10
1分钟前
畅快甜瓜发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732177
求助须知:如何正确求助?哪些是违规求助? 5337212
关于积分的说明 15322034
捐赠科研通 4877874
什么是DOI,文献DOI怎么找? 2620700
邀请新用户注册赠送积分活动 1569938
关于科研通互助平台的介绍 1526542